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Summary

1. We present a method, ‘SURFACE’, that uses the Ornstein-Uhlenbeck stabilizing selection model to identify

cases of convergent evolution using only continuous phenotypic characters and a phylogenetic tree.

2. SURFACE uses stepwise Akaike Information Criterion first to locate regime shifts on a tree, then to identify

whether shifts are towards convergent regimes. Simulations can be used to test the hypothesis that a clade con-

tainsmore convergence than expected by chance.

3. Wedemonstrate themethodwith an application toHawaiianTetragnatha spiders, and present numerical sim-

ulations showing that themethod has desirable statistical properties given data formultiple traits.

4. The R package surface is available as open source software from the Comprehensive RArchiveNetwork.

Key-words: community convergence, contingency, determinism, ecomorph, Hansen model,

OUCH, phylogenetic comparativemethods, replicated adaptive radiation

Introduction

Convergent evolution is among the most powerful lines of evi-

dence for the power of natural selection to shape organisms to

their environment (Simpson 1953;Harvey&Pagel 1991; Losos

2011). The repeated evolution of similar phenotypes in similar

environments implies a deterministic aspect of phenotypic evo-

lution. In some evolutionary radiations, including African

cichlids (Kocher et al. 1993), Caribbean Anolis lizards (Losos

2009) andHawaiianTetragnatha spiders (Gillespie 2004), com-

munities of similar ecological specialists have evolved largely

independently. Such clade-wide convergence can be inter-

preted as lineages independently responding to the same selec-

tive regimes, or equivalently, discovering the same adaptive

peaks on a macroevolutionary adaptive landscape (Schluter

2000). In what follows, we do not distinguish between conver-

gence and parallelism, as either represents evidence for nonran-

dom evolutionary change, and as we model convergence at the

phenotypic level without addressing its underlying genetic and

developmental basis (Simpson 1953; Arendt & Reznick 2008;

Losos 2011).

While studies of convergence have resulted in many key

insights into adaptation and adaptive radiation, several issues

complicate the statistical detection of exceptional convergence

in continuous traits. First, some lineages may evolve similar

trait values by chance even in the absence of deterministic

convergence. Simulations demonstrate that even a random

walk (Brownian motion) model of evolution can lead to con-

siderable incidental convergence, especially if trait space is low-

dimensional (Stayton 2008). If repeated convergent evolution

is to be interpreted as adaptation to shared environments, the

frequency of convergence should be distinguishable fromwhat

is expected by chance. More subtly, tests for convergence may

be motivated by the observed similarity of sets of species, such

as ‘ecomorphs’ that have evolved similar morphology in

response to similar ecological conditions (Williams 1972;

Gillespie 2004; Losos 2009). The a priori identification of

ecomorphs creates the potential for bias in tests for conver-

gence, for two reasons. First, nonecomorph species may be

ignored in the analysis, exaggerating the extent of phenotypic

clustering in a clade (Losos et al. 1998; Beuttell & Losos 1999).

Second, testing whether ecomorphs are convergent in a set of

traits has an element of circularity if those traits played any role

in ecomorph designation. Tests for convergence should be able

to rule out phenotypic similarity due to chance, and to avoid

identifying candidate convergent species a priori when it is

inappropriate to do so.

We present a new method for identifying convergent evolu-

tion without the a priori designation of ecomorphs or selective

regimes. The method takes as input only a phylogenetic tree

and continuous trait data, and fits a series of stabilizing selec-

tion models to identify cases where multiple lineages have dis-

covered the same selective regimes. Our method is called

‘SURFACE’, a recursive acronym for ‘SURFACE Uses

Regime Fitting with Akaike Information Criterion (AIC) to*Correspondence author. E-mail: ingram@fas.harvard.edu
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model Convergent Evolution’. It builds upon two recent devel-

opments in comparative phylogenetic analysis: methods allow-

ing selective regimes to be ‘painted’ onto the branches of a

phylogenetic tree (Hansen 1997; Butler & King 2004; Beaulieu

et al. 2012), and data-driven stepwise algorithms that locate

evolutionary shifts on a tree (Alfaro et al. 2009; Thomas &

Freckleton 2012). SURFACE consists of a ‘forward’ stepwise

phase in which selective regimes are added to the tree, followed

by a ‘backward’ phase that identifies cases where the same

regime is reached by multiple lineages (Fig. 1). This results in

an estimate of the macroevolutionary adaptive landscape that

includesmeasures of the extent of phenotypic convergence.

IMPLEMENTATION

The SURFACE method is implemented as open source soft-

ware in the R environment (R Core Team 2012), and is avail-

able as the extension package surface from the

Comprehensive R Archive Network (CRAN). surface calls

functions in the ouch package (Butler & King 2004) to fit
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Fig. 1. The forward and backward phases of SURFACE. (a) Generating Hansen model used to simulate trait evolution on a pure-birth tree with a
total depth of 10 My, painted with one ancestral and two convergent regimes (shifts denoted * and #). Three traits (values proportional to symbol
size) were simulated with relatively rapid adaptation (a = 0!5, r2 = 0!25). (b–f) Steps of the forward phase in which a regime shift is added to the
branch with the lowest ∆AICc score (only values <10 shown). (g) ∆AICc values for each candidate pairwise regime collapse in the backward phase
(all collapses were compatible and completed in one step). (h)Hansenmodel returned by SURFACE: in this case, all regime shifts were recovered.
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models with selective regime shifts, and incorporates

functions from the ape (Paradis, Claude & Strimmer 2004),

geiger (Harmon et al. 2008), pmc (Boettiger, Coop &

Ralph 2012), and igraph (Csardi & Nepusz 2006) packages.

The two phases of the SURFACE algorithm are carried out

by the functions surfaceForward and surfaceBack-
ward, or by the wrapper function runSurface. These func-
tions take as input a phylogenetic tree (this can contain

polytomies, which should be left unresolved), and data for

one or more continuous traits for each species in the tree.

Other features of surface include the function surfac-
eSimulate for generating data sets, utilities for converting

between data formats and accessing outputs, functions for

visualizing the results of an analysis and a vignette that

demonstrates the major features of the package.

Materials andmethods

FORWARD PHASE: ADDING REGIME SHIFTS TO THE

HANSEN MODEL

We model adaptive evolutionary scenarios using the Ornstein-Uhlen-

beck (OU) process, a convenient representation of evolution towards

adaptive peaks (Felsenstein 1988; Hansen 1997). Under the OU pro-

cess, a continuous traitX evolves following:

dXðtÞ ¼ a½h& XðtÞ'dtþ rdBðtÞ: eqn 1

The magnitude of undirected, stochastic evolution is captured by r,
generally presented as the Brownian rate parameter r2 (dB(t) is Gauss-

ian white noise). The deterministic component of trait evolution is rep-

resented by a: the rate of adaptive evolution towards an optimum trait

value h (we favour this interpretation over the use of a as a measure

of the strength of selection; for further discussion, see Hansen 2012).

An intuitive transformation of a is the phylogenetic half-life t1/2 = log

(2)/a: the expected time for a lineage to evolve halfway towards h.
Hansen (1997) showed that adaptive evolution can be modelled as an

OU process in which lineages in different selective regimes are attracted

to different optima, and Butler & King (2004) presented methods for

specifying adaptive hypotheses by ‘painting’ multiple hypothesized

regimes onto the branches of a phylogenetic tree. These ‘Hansen’ mod-

els can be used to test for convergence by evaluating support for a

model in which multiple lineages shift to shared regimes corresponding

to selective factors such as different habitats. SURFACE differs from

most previous applications of the Hansen model in that the placement

of regime shifts is guided by continuous trait data rather than a priori

hypotheses about where convergence occurred.

The forward phase of SURFACE adds regimes to a Hansen model,

starting with a model in which the entire clade is in a single regime.

Maximum likelihood is used to estimate parameter values and model

likelihoods L. Under any Hansen model, the trait data X follow a mul-

tivariate normal distribution, with expectation E[X] and variance–
covariance matrix V (Butler & King 2004). Expected values for the n

tip species depend on the regimes experienced during their evolutionary

history. Covariances between species pairs depend on the duration of

their shared ancestry and the total duration of time each has evolved

independently, and higher values of a erode the signal of more ancient

events. Nonlinear optimization is used to find the maximum likelihood

estimate for a, from which calculation of the maximum likelihood esti-

mates ofr2 and h is straightforward (detailed equations are in Butler &
King 2004). We assume for computational tractability that a and r2

are constant across the tree (but see Beaulieu et al. 2012).

SURFACE takes as input one or more continuous trait measure-

ments for each species, though it generally performs much better if the

number of trait axesm is at least 2 (see below). If trait data are multidi-

mensional, a, r2 and h become vectors of length m. We assume that

traits evolve independently,meaning there are no parameters represent-

ing correlated diffusion (r2) or adaptation (a) of different traits (but see
Bartoszek et al. 2012). Because traits evolve independently, we can

carry out separate likelihood estimations for each trait, then obtain an

overall log-likelihood as the sum of them log-likelihoods (equivalent to

the logarithmof the product of the likelihoods) estimated for individual

traits: logðLÞ ¼
Pm

i¼1 logðLiÞ.
After fitting the single-regime Hansen model, we begin the stepwise

process of adding regime shifts. We generate candidate models by add-

ing one regime shift at a time to the origin of each branch, causing it

and its descendants to be attracted to a new optimum h. For each can-

didate model, likelihood estimation is repeated and the log-likelihood

is summed across traits.Wemeasuremodel performance with theAIC,

which balances improvements in the log-likelihood against increases in

model complexity, and is often used to evaluate competing macroevo-

lutionary models (Burnham & Anderson 2002; Butler & King 2004;

Alfaro et al. 2009; Harmon et al. 2010; Boettiger, Coop & Ralph

2012).We use the finite sample size correction

AICc ¼ &2 logðLÞ þ 2pþ 2pðpþ 1Þ
N& p& 1

! "
; eqn 2

where the sample size N is the total number of trait values (N = nm)

and p is the number of parameters in the model (Burnham&Anderson

2002). We define the number of parameters as p = k + (k′ + 2)m. Of

these parameters, k correspond to the placement of the regime shifts in

the tree (counting the placement of the ancestral regime as a shift),

while k′m correspond to the k′ optima (h1...k0 ) estimated for each of the

m traits (k′ = k during the forward phase). The additional 2m parame-

ters are trait-specific estimates of a and r2. Thus, the single-regime

Hansen model has 1 + 3m parameters, and adding a regime adds

1 + m parameters: a ‘shift’ parameter and an estimate of h for each trait
under the new regime. This way, we account for the complexity both of

the adaptive landscape (k′, the number of adaptive peaks) and of the

clade’s evolutionary history (k), a distinction that becomes important

during the second phase of the analysis.

The performance of each candidate model i is quantified as

∆AICc(i) = AICc(i) & AICc, the difference between that model’s AICc

and the AICc of the model from the previous iteration. Because AICc

values are calculated after adding log-likelihoods across traits, a new

model may improve the AICc by increasing the log-likelihood for allm

traits simultaneously, or by increasing the log-likelihood for a subset of

traits sufficiently to compensate for an unchanged log-likelihood for

other traits.Whichever candidatemodel has the lowest (i.e. best)∆AICc

is selected, as long as the magnitude of the improvement exceeds a

threshold ∆AICc* (∆AICc(i) < ∆AICc*). In our experience it is gener-

ally effective to accept all AICc improvements (∆AICc* = 0), but users

can specify more conservative thresholds guided by conventional inter-

pretations of AIC differences (e.g. ∆AICc* = &2 or &5; Burnham &

Anderson 2002) or by simulation (Thomas & Freckleton 2012). Some

users may wish to use Monte Carlo simulations to test whether each

step constitutes a statistically significant improvement when the previ-

ous iteration is treated as the null model (the function pmcSurface
provides an interface to the pmc package; Boettiger, Coop & Ralph

2012).

The regime shift corresponding to the best model is painted onto the

tree and retained through subsequent iterations. This process of fitting

candidate models and painting one new regime onto the tree per step is

repeated until no candidatemodelmeets the criterion∆AICc < ∆AICc*

© 2013 The Authors. Methods in Ecology and Evolution © 2013 British Ecological Society, Methods in Ecology and Evolution, 4, 416–425
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(Fig. 1b–f). The number of likelihood searches (m [2n – k & 1]) at each

iteration can be reduced by using the option exclude to skip candi-

date models that performed poorly during the previous iteration and

are thus highly unlikely to be among the best models. The outcome of

the algorithm is fully determined by the ∆AICc values, although sto-

chasticity can be introduced by using the option sample_shifts to

randomly sample from among the models within a specified number of

AICc units of the best model at each step. At the end of the forward

phase, we have a fittedHansenmodel with k regime shifts painted onto

the tree, withm estimates of a andr2, and a k-by-mmatrix of optima h.

BACKWARD PHASE: IDENTIFYING CONVERGENT

REGIMES

During the backward phase of SURFACE, we carry out a second step-

wise procedure to identify whether subsets of the k regimes can be ‘col-

lapsed’ together to yield k′ < k distinct regimes. Recall that each new

regime shift added to the Hansen model increased the number of

parameters by m + 1, accounting for m new optima and one new

regime shift. If we subsequently collapse two regimes into one conver-

gent regime, the regime shift parameter remains in the model, but

because the vector of optima for the regimes is constrained to be equal,

the number of distinct regimes k′ decreases by 1, and the number of

parameters p decreases by m. While constraining regimes to have the

same optima cannot increase the log-likelihood of the model, the AIC

may nonetheless improve if the reduction in the number of parameters

outweighs any decrease in the log-likelihood.

Starting with the model in which each shift is to a different regime,

we move through all pairwise combinations of regimes i and j, and

re-fit the model after collapsing them into a shared regime (again add-

ing log-likelihoods across traits). We then calculate ∆AICc(ij) for each

of these k (k & 1)/2 candidate models by comparison to the previous

model, and determine which candidate models meet the criterion

∆AICc(ij) < ∆AICc* (Fig. 1g), indicating that themodel improves when

regimes i and j are treated as convergent. Importantly, not all proposed

regime collapses that meet this criterion will necessarily be compatible

with one other. For example, regimes A and B may each improve the

AICc when collapsed with regime C, but not when collapsed with each

other (∆AICc(AC) < ∆AICc* and ∆AICc(BC) < ∆AICc*, but ∆AICc

(AB) ) ∆AICc*). One can decide either to accept only the pairwise col-

lapse with the lowest ∆AICc at each iteration, or to identify any sets of

compatible regime collapses.

We use techniques from graph theory to include as many collapses

as possible at each step, subject to the condition that no pair of

regimes that does not meet the ∆AICc(ij) < ∆AICc* criterion is col-

lapsed. We build an undirected graph whose vertices are regimes,

with edges drawn between pairs of regimes that meet this criterion.

We then use the function clusters in the igraph package (Csardi

& Nepusz 2006) to identify all connected components of this graph:

clusters of directly or indirectly connected regimes that are not con-

nected to regimes from any other cluster. If all pairwise ∆AICc values

between regimes in a cluster are less than ∆AICc*, all collapses are

compatible and the cluster is collapsed into a single convergent

regime. If some pairs of regimes in the cluster do not meet the ∆AICc

(ij) < ∆AICc* criterion, only the pair of regimes in the cluster with the

lowest ∆AICc is collapsed. As multiple regimes may be collapsed in a

step, the updated model AICc is calculated using the updated num-

bers of distinct regimes k′ and parameters p.

This stepwise procedure is repeated until no further collapses

improve the model by ∆AICc* (Fig. 1h). The final Hansen model pro-

duced by SURFACE has k regime shifts placed on the tree and k′ * k

distinct regimes. The function surfaceSummary returns the details of

where in the tree the inferred regime shifts occur, as well as estimates

for the parameters of the OUmodel (a,r2 and h) and parameters sum-

marizing the features of the inferred macroevolutionary landscape

(Table 1). The extent of convergence in the model can be quantified as

∆k = k & k′, with ∆k representing the simplification of the adaptive

landscape (decrease in the number of regimes or peaks) when conver-

gent regimes are identified during the backward phase. Alternative

measures of convergence include c (the number of shifts that are

towards convergent regimes occupied by multiple lineages), or either

∆k or c scaled to the number of regime shifts (∆k/k or c/k). One could

also envisionmeasures of convergence not currently implemented, such

as the average magnitude of change in optimum position between

convergent regimes and their ancestors.

HYPOTHESIS TESTING: IS CONVERGENCE

EXCEPTIONAL?

The algorithm described above attempts to find the best painting of

convergent and nonconvergent regime shifts on the tree, subject to the

constraints of the stepwise approach. SURFACE may be used as an

exploratory tool to visualize evolutionary patterns but can also be used

to test biologically motivated hypotheses about the evolutionary his-

tory of the clade.We can ask if the clade is characterized bymany shifts

between adaptive peaks (Simpson 1953) by evaluating the number of

inferred shifts k and the improvement of the AICc between the initial

single regime OUmodel and the model returned by the forward phase.

We can then evaluate the evidence for convergent evolution using the

number of cases of convergence (∆k or c) and the further improvement

of the AICc between themodels returned by the forward and backward

phases.

An issue that arises whenwe comparemodels in this way is that some

regimes are often added when the true evolutionary model contained

no regime shifts, and some cases of convergence are often identified

when convergencewas absent from the truemodel. If we are specifically

interested in the number of shifts or cases of convergence, one solution

is to simulate data sets under a ‘null’ model that lacks regime shifts

and/or convergence, then run SURFACE on these simulated data sets

to obtain a null distribution of the metric of interest (k, c or ∆k). The
proportion of values of this metric (including both null and observed

values) at least as large as the observed value provides a P-value for a

Table 1. Parameters representing evolutionary processes and features
of the adaptive landscape

Parameter Interpretation

r2 Rate of stochastic evolution (one parameter per trait)
a Rate of adaptation to optima (one parameter per trait)
t1/2 Expected time to evolve halfway to an optimum; log(2)/a
h Optimum trait value (one parameter per regime per trait)
k Number of regime shifts
k′ Number of distinct regimes (after collapsing

convergent regimes)
k′conv Number of convergent regimes reached bymultiple shifts
∆k k & k′, the reduction in complexity of the adaptive

landscape when accounting for convergence
∆k/k Relative reduction in complexity of the adaptive

landscape when accounting for convergence
c Number of shifts that are towards convergent regimes

occupied bymultiple lineages
c/k Proportion of shifts that are towards convergent regimes

© 2013 The Authors. Methods in Ecology and Evolution © 2013 British Ecological Society, Methods in Ecology and Evolution, 4, 416–425
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significance test of whether the observed value exceeds the expectation

under the null model. One could also compare the change in AICc dur-

ing the forward and backward phases of the analyses of simulated and

real data sets to evaluate whether the model improvement attributable

to convergence, in addition to the number of cases of convergence, is

exceptional.

We have implemented two types of null models that can be used for

hypothesis testing: one captures the general temporal dynamics of

diversificationwithout regime shifts and the other includes regime shifts

but not deterministic convergence. The first null model may be simple

constant-rate Brownian motion, though one may also wish to consider

models in which the rate of trait evolution declines over time (e.g. the

‘Early Burst’ or ‘Time’ models; Harmon et al. 2010; Mahler et al.

2010), or in which the volume of trait space is constrained (e.g. the sin-

gle-regime OU model; Felsenstein 1988; Harmon et al. 2010). Null

data sets can be simulated using the maximum likelihood parameters

of the preferredmodel for each trait, andmay be appropriate for testing

either for more regime shifts or greater convergence than expected by

chance.

The forward phase of SURFACEmay fit relatively few regime shifts

to data simulated under this type of null model, meaning the null distri-

bution of c or ∆k may be biased downwards because there are fewer

regimes that can potentially be collapsed during the backward phase.

To generate a null distribution of the extent of convergence that

accounts for the presence of regime shifts, one can take as a starting

point the Hansen model returned by the forward phase. Estimates of a
and r2 and the placement of each of the k shifts are preserved, but new

optimum values are sampled to break up any tendency for optima to

cluster in trait space. To ensure that the volume of trait space will be

comparable, new optima for each trait can be sampled from a normal

distributionwith themean and variance of the estimated optima. Other

optionsmay be preferable if some optima are inferred to bewell outside

the range of trait data, which may truly reflect incomplete evolution

towards distant optima, or may be a biologically unrealistic conse-

quence of model assumptions such as a being constant across the tree

or shifts only occurring at the origin of branches. Null data sets simu-

lated under thisHansen nullmodelmay contain incidental convergence

if optima are similar by chance, and can be used to ask whether the

extent of convergence is exceptional even when the presence of regime

shifts is accounted for.

APPLICATION TO HAWAI IAN TETRAGNATHA SPIDERS

Todemonstrate thesemethods, we investigated patterns ofmorpholog-

ical evolution in a well-studied adaptive radiation: Hawaiian spiders in

the genus Tetragnatha (Gillespie, Croom & Palumbi 1994; Gillespie,

Croom & Hasty 1997; Blackledge & Gillespie 2004; Gillespie 2004).

Hawaiian Tetragnatha consists primarily of two diverse clades: the

‘spiny-leg’ clade and a clade of web builders (the more distantly related

T. hawaiensis has not radiated in Hawaii). Both clades show evidence

for repeated convergent evolution, either in traits related to microhabi-

tat such as size, colour and foraging behaviour (spiny-leg clade; Gilles-

pie 2004) or in an extended phenotypic trait, web shape (web-building

clade; Blackledge & Gillespie 2004). We used SURFACE to test for

convergence in continuous morphological traits within and between

the two clades. We note that, apart from body size, our analysis does

not use traits that have previously been identified as convergent in

Tetragnatha (Gillespie, Croom&Hasty 1997), which are either discrete

characters or are unavailable for many species. The fact that conver-

gence is known largely for traits and for subsets of the clade that differ

from those included heremeans that whileTetragnatha is an interesting

group in which to demonstrate these methods, what follows should not

be viewed as a test of existing hypotheses about how selection has

shaped the evolution of this group.

We used an ultrametric phylogenetic tree from Harmon et al.

(2010), containing 58 taxa – 25 spiny-leg and 33 web-building species –
after the removal ofT. hawaiensis. The treewas constructed frommito-

chondrial sequence data using UPGMA, and was scaled to have a root

age of 4!17 Ma. As trait data, we used log-transformed total length

(TL) as a measure of body size, plus two size-independent morphologi-

cal trait axes (Gillespie, Croom & Palumbi 1994; Harmon et al. 2010).

To obtain these, we calculated phylogenetic residuals of four log-trans-

formed traits (cephalothorax length, chelicera length, leg spine length

and abdomen depth/length ratio) against log (TL), then retained the

first two axes of a phylogenetic principal components analysis (pPCA)

of these four size-adjusted traits (Revell 2009). The pPCA assumes a

Brownian motion model of evolution, in contrast to the more complex

Hansenmodels we are fitting.We confirmed that the axes were qualita-

tively similar even under a nonphylogenetic PCA, and were thus unli-

kely to be strongly affected by the method of calculation. Higher values

of pPC1 were associated with longer cephalothoraxes and chelicerae,

and higher pPC2 was associated with deeper abdomens and longer

spines. We analysed this data set with SURFACE using a ∆AICc*

threshold of 0 and allowing multiple compatible regime collapses dur-

ing each step of the backward phase. We also ran SURFACE on 99

data sets simulated under each of the Brownian motion and Hansen

null models to evaluate whether convergence in this clade was greater

than expected by chance.

The final Hansen model included 10 regime shifts and seven dis-

tinct regimes (∆k = 3) and c = 6 convergent shifts (Fig. 2). The

AICc improved from 495!6 to 430!7 (∆AICc = 64!9) during the for-

ward phase, then to a final AICc of 410!0 during the backward

phase (∆AICc = 20!7; for comparison, the AICc of the Brownian

motion model was 517!1). Three convergent regimes were present

in the model, each of them reached by one regime shift in each of

the two major clades. The majority of the taxa in the spiny-leg

clade (21 of 25) were placed into one of the three convergent

regimes, each of which was also discovered by a small subclade of

one or two species in the web-building clade. Thus, while Tetrag-

natha research has focused on convergence within each of the two

subclades (Blackledge & Gillespie 2004; Gillespie 2004), SURFACE

found only cases of between-subclade convergence. The estimated

phylogenetic half-lives of t1/2 = 0!24, 0!06 and 0!19 My for log

(TL), pPC1 and pPC2, respectively, implied relatively fast adapta-

tion towards optimum trait values (Hansen 2012). However, high

rates of stochastic trait evolution (r2 = 0!21, 19!6 and 10!8 My&1)

reduced the distinctness of regimes (Fig. 2d and e).

Comparison to the null model simulations did not reveal signifi-

cantly greater convergence in Tetragnatha than expected by chance.

The simplification of the adaptive landscape (∆k = 3) was not excep-

tional compared to the distributions simulated under either Brownian

motion (P = 0!33) or the Hansen null model (P = 0!29; Fig. 2c). Simi-

larly, the number of convergent shifts (c = 6) did not significantly

exceed either null distribution (P = 0!22) under either nullmodel. Thus,

we cannot reject a null hypothesis that the number of cases of conver-

gence found by SURFACE is incidental, resulting from some optima

being similar by chance. The failure to recover established cases of con-

vergence is not especially surprising as, other than body size, the traits

generally understood to be convergent in this group are discrete charac-

ters and thus are not suitable for fitting Hansen models. Thus, while

this demonstration of SURFACE provides a useful illustration of the

patterns of morphological evolution in Hawaiian Tetragnatha, it

© 2013 The Authors. Methods in Ecology and Evolution © 2013 British Ecological Society, Methods in Ecology and Evolution, 4, 416–425
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should not be taken as refutation of more biologically motivated

hypotheses about convergence.

SIMULATIONS TO ASSESS PERFORMANCE

We investigated the performance of SURFACEusing two sets of simu-

lations: one to quantify its ability to recover a truemodel, and the other

to evaluate the statistical properties of the simulation-based hypothesis

test. First, we ran SURFACE on data sets simulated under different

Hansen models to examine the accuracy with which several aspects of

the generating model were recovered. We quantified the proportion of

branches containing regime shifts in the generating model that were

correctly assigned shifts in the fitted model (ignoring the basal shift,

which is always present). We also calculated the similarity between the

true and fitted models based on the regime assignments of extant

species. The function propRegMatch determines for all pairs of taxa

(or optionally all pairs of branches) whether they are in the same regime

or in different regimes in the fitted Hansen model. It repeats this deter-

mination for the generating model, then calculates the proportion of

pairs that have the same status in both models. As this proportion

approaches 1, it indicates that the fitted model is accurately grouping

taxa into the correct regimes. Finally, we compared the number of

regime shifts (k) and distinct regimes (k′) in the true and fitted Hansen

models to assess the recovery of these general characteristics without

regard to the specific placement of regimes.

We varied features of the generating model and tree to evaluate

which have the greatest influence on the accuracy of SURFACE, with

10 replicates of each set of parameter values. One parameter was varied

at a time, while the remaining parameters were set to default values (in

boldface). We simulated data on n = 32, 64 or 128 taxon trees
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generated under a pure-birth model, and scaled to a total depth of

10 My. We randomly pruned 0%, 25% or 50% of the taxa from the

tree to evaluate the effects of missing data. We simulatedm = 1, 2 or 4

trait axes, with r2 = 0!1 and a = 0!25, 0!5 or 1 (corresponding to an

average of t1/2 = 2!8, 1!4 or 0!7 My to reach a new optimum).We sam-

pled optima for each trait from a normal distribution with SD = 1, 2 or

4, and added k ¼ 1
16n,

3
16n or

5
16 n regime shifts towards k0 ¼ 1

2 k;
3
4 k or k

distinct regimes. Randomly selecting branches to receive shifts tends to

result in shifts concentrated at the tips, so we also varied whether

branches were sampled probabilistically in proportion to their time of

origin, with a very recent branch being 19, 0!19 or 0!019 as likely to

be sampled as branches originating at the root.

Over the parameter space explored, SURFACE was more accurate

for data simulated with more traits, faster adaptation and more regime

shifts (Figs 3 and 4). Under most conditions, 70–80% of regime shifts

were placed correctly, though the proportion was variable and was

lower for data sets with few traits. The proportion of recovered shifts

declined when shifts were sampled disproportionately towards the root

of the tree, suggesting that recent shifts are more likely to be identified

accurately. The proportion of pairs of tip taxa correctly assigned to

either the same or different regimes was generally much higher, typi-

cally exceeding 90% (Fig. 3). Thus, the fittedmodel tended to resemble

the generating model even when shift placement was imprecise, likely

because a shift placed on a branch nearby in the tree to the true shift

location can have a very similar effect on the expected distribution of

traits among extant taxa. The broad characteristics of the true Hansen

model k and k′ were generally close to the true values as well (Fig. 4).

SURFACE tended to slightly overestimate the number of shifts and

regimes when there were few regime shifts, and to underestimate the

true number when there were many shifts, few traits, or many missing

taxa (though the latter is expected because some regimes will be

unrepresented in the pruned tree). Processor times required for these

SURFACE analyses varied from a few minutes to over 4 h on Intel

x86-64 eight-core processors with 24 Gb RAM, and increased primar-

ily with tree size and to a lesser extent with the number of traits and

regimes.

Our second set of simulations evaluated the statistical power and

type I error of the simulation-based hypothesis test of whether a clade

contains more convergence than expected by chance. We explored the

effects of clade size n, number of traitsm and the true extent of conver-

gence ∆ktrue. We simulated 20 ‘real’ data sets with each of four levels of

convergence under each of the following conditions: n = 32, m = 4;

n = 64, m = 1; n = 64, m = 2; n = 64, m = 4. For 64-taxon trees, we

randomly placed k = 16 shifts and set levels of convergence to

∆ktrue = 0, 2, 6 or 12, while 32-taxon trees had k = 8 and ∆ktrue = 0, 1,

3 or 6. All other parameters were set to the default values given above.

We ran SURFACE on each data set to estimate the extent of conver-

gence ∆kobs (results were similar when we measured convergence using

c). Then, for each ‘real’ data set, we ran SURFACEon 50 data sets sim-

ulated under the Hansen null model to obtain a null distribution of the

extent of convergence ∆knull. We computed P-values by comparison to

the null distributions, and calculated approximate statistical power for

each set of parameters as the proportion of significant results

(P < 0!05) out of the 20 tests.
These analyses indicate that this simulation-based hypothesis test

has fairly good power to detect a greater amount of convergence than

expected by chance, given multidimensional trait data (Fig. 4). Power

was lower for analyses of single traits, likely because more incidental

convergence is expected in low-dimensional trait space (Stayton 2008).

Type I error, estimated as the proportion of the 20 data sets that did

not contain true convergence (∆ktrue = 0) but that nonetheless resulted

in significant tests, was 0 or 0!05 for each combination of n and m.

These results suggest that the simulation-based test for exceptional

convergence has appropriate statistical properties.
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Discussion

We have described a new method for inferring the macro-

evolutionary adaptive landscape for a clade, allowing the

assessment of phenotypic convergence given only a phyloge-

netic tree and continuous trait measurements. SURFACE

fills a gap in the set of currently available phylogenetic com-

parative methods by combining features of two recent devel-

opments. First, recent applications of the OU model allow

researchers to paint the branches of a tree with hypothesized

selective regimes (Butler & King 2004; Beaulieu et al. 2012).

This provides a powerful way to test whether taxa in similar

environments have evolved similar phenotypes, but does not

solve the issue of circularity if hypothetical regimes were

identified in part based on the traits being modelled. The sec-

ond development is methods for fitting shifts in evolutionary

parameters to a tree without an a priori hypothesis about

where the shifts should occur. The first of these methods,

MEDUSA, uses stepwise AIC to locate shifts in speciation

and extinction rates on a tree (Alfaro et al. 2009), and subse-

quent methods allow shifts in the Brownian rate of trait evo-

lution r2 to be located using stepwise AIC (trait MEDUSA:

Thomas & Freckleton 2012) or Bayesian Markov chain

Monte Carlo methods (Eastman et al. 2011; Venditti, Meade

& Pagel 2011; Revell et al. 2012). The method most similar

to ours is MATICCE, which uses a model-averaging infor-

mation theoretic approach to evaluate support for a number

of candidate Hansen models (Hipp & Escudero 2010). The

major differences are that SURFACE does not take candi-

date regime shift scenarios as inputs, and that it includes

routines for evaluating whether regimes are convergent.

The main innovation of SURFACE is its backward phase,

which assesses whether multiple regime shifts are towards the

same regimes. Our simulations show that SURFACE per-

forms fairly well at recovering the true convergent and noncon-

vergent regimes in simulated data sets under a range of

conditions, particularly given multidimensional trait data and

fast adaptation to new optima (Figs 3 and 4). In general, fea-

tures that increase the degree to which taxa in the same regime

are clustered in trait space should improve the performance of

SURFACE. Greater trait dimensionality increases the likeli-

hood of separation in at least one dimension, while more

widely spaced optima, faster adaptation, or lower rates of sto-

chastic evolution should lead to a greater signal of determinis-

tic vs. stochastic evolutionary processes. We have also

described how simulations can be used to test evolutionary

hypotheses, such as whether the extent of convergence is

greater than expected under a given null model. This test has

good statistical power given multidimensional trait data and a

moderate or high extent of convergence in the generating

model (Fig. 5). We leave it to users to decide whether this null

model approach is appropriate to test their hypotheses of inter-

est, or if they prefer to make inferences strictly based on the

model AICc and parameter values.

The ability to carry out data-driven tests for exceptional

convergence presents an opportunity to re-evaluate clades

that have previously been recognized as containing many

cases of convergence. In this study, an analysis of morpho-

logical evolution in Tetragnatha spiders on Hawaii identi-

fied only a limited extent of convergence that occurred

between subclades (Fig. 2), although it is important to

note that we could not incorporate the discrete characters
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understood to be convergent within subclades (Gillespie,

Croom & Hasty 1997; Gillespie 2004). SURFACE pro-

vides an opportunity to objectively evaluate the extent of

convergence in other clades, including classic replicated

radiations such as cichlids in Africa’s Great Lakes (Kocher

et al. 1993).

SURFACE may have several additional uses to researchers

interested in a data-driven estimation of the adaptive land-

scape. For example, one may wish to test whether regime shifts

are nonrandomly associated with biogeographical events, or

are concentrated early or late in a clade’s history, although it is

important to remember that regime groupings of extant taxa

and broad measures of convergence are recovered more reli-

ably than precise positions of regime shifts (Figs 3 and 4).

Other hypotheses may concern the inferred adaptive land-

scape, which could be compared to a landscape predicted on

the basis of resource distributions and phenotype-resource use

mapping (e.g. Schluter & Grant 1984). The methods described

here can potentially be extended to allow simulation-based

hypothesis tests tailored to a range of biologically motivated

questions.

SURFACE infers aHansenmodel without the need to paint

selective regimes onto the tree in advance, but it may often be

more appropriate to test specific adaptive hypotheses. This is

particularly the case when the adaptive hypothesis was identi-

fied using traits other than those being fitted with the Hansen

model. For example, one may test whether habitat use results

in convergent evolution of morphology (Collar, Schulte & Lo-

sos 2011), or whether ecomorphs recognized by one set of traits

(e.g. microhabitat and morphology) are also convergent in

other traits (e.g. sexual dimorphism; Butler & King 2004). We

do note that SURFACE should be robust to a ‘trickle-down’

effect that can mislead inference when hypothetical evolution-

ary shifts are placed on specific branches, whereby a shift on a

phylogenetically nested branch may provides false support for

a hypothesized shift on an earlier branch (Moore & Chan

2004; Revell et al. 2012).

The choice of traits will be an important component of any

SURFACE analysis. First, as the method assumes that traits

have independent rates of adaptation (a) and diffusion (r2),

traits with strong evolutionary correlations should be avoided.

SURFACE performs poorly when given only a single trait,

but between two and four traits is often enough to ensure good

performance (Figs 3 and 4), assuming these traits are in fact

affected by the selective regime shifts. Including too many

traits, especially axes lacking clear biological interpretation or

unlikely to be involved in environmental adaptation, may limit

the ability of SURFACE to recover convergence in ecomor-

phological traits. On the other hand, selection of only traits

already believed to be convergent may predispose the analysis

to finding a positive result. Researchers using SURFACE

should ensure that the number and type of input traits are

appropriate for addressing a given question in their clade of

interest.

SURFACE uses stepwise AICc as a computationally tracta-

ble means of exploring the space of possible evolutionary sce-

narios (Alfaro et al. 2009; Thomas & Freckleton 2012). This

stepwise approach has drawbacks: the constraint of adding

one regime shift per step means the optimal configuration may

not be found, and the answer can be sensitive to the choice of

∆AICc* and the topology and branch lengths of the tree.While

SURFACE can be run on multiple credible trees and can

optionally allow stochasticity in the sequence of regimes

added, there is still no guarantee of finding an optimal model

or fully quantifying uncertainty. Future Bayesian methods

may allow a more thorough exploration of model space and a

better accounting for uncertainty in the placement and degree

of convergence of regimes and in the phylogeny itself. In the

meantime, SURFACE offers a valuable step forward in the

application of comparative methods to test hypotheses about

convergent evolution.

Many clades have long been understood to contain extensive

convergence, but statistically appropriate methods for testing

the extent of convergence have been lacking. SURFACEallows

reassessment of such data sets, and can be used to test whether

convergence is greater than expected by chance. As an objective

tool for characterizing the macroevolutionary adaptive

landscape of a clade, SURFACE provides many new opportu-

nities to understand the dynamics of adaptive radiation.
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