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Summary

! Hybridization, incomplete lineage sorting, and phylogenetic error produce similar incongru-
ence patterns, representing a great challenge for phylogenetic reconstruction. Here, we use
sequence capture data and multiple species tree and species network approaches to resolve
the backbone phylogeny of the Neotropical genus Lachemilla, while distinguishing among
sources of incongruence.
! We used 396 nuclear loci and nearly complete plastome sequences from 27 species to clar-
ify the relationships among the major groups of Lachemilla, and explored multiple sources of
conflict between gene trees and species trees inferred with a plurality of approaches.
! All phylogenetic methods recovered the four major groups previously proposed for
Lachemilla, but species tree methods recovered different topologies for relationships between
these four clades. Species network analyses revealed that one major clade, Orbiculate, is likely
of ancient hybrid origin, representing one of the main sources of incongruence among the
species trees. Additionally, we found evidence for a potential whole genome duplication event
shared by Lachemilla and allied genera.
! Lachemilla shows clear evidence of ancient and recent hybridization throughout the evolu-
tionary history of the group. Also, we show the necessity to use phylogenetic network
approaches that can simultaneously accommodate incomplete lineage sorting and gene flow
when studying groups that show patterns of reticulation.

Introduction

Hybridization is now recognized as a fundamental process in the
evolution of animals, plants, and fungi (Giraud et al., 2008; Sch-
wenk et al., 2008; Soltis & Soltis, 2009; Payseur & Rieseberg,
2016), but it seems to be particularly common in plants, where
hybrid speciation, especially through polyploidy, is a well-
established mechanism (Linder & Rieseberg, 2004; Mallet, 2007;
Whitney et al., 2010). Many plant species might be of direct
hybrid origin or descended from a hybrid species in the recent
past (Soltis & Soltis, 1995), and estimates reveal that 40–70% of
all plant species are polyploids (Otto & Whitton, 2000), suggest-
ing that hybridization may indeed be a common mechanism for
spurring adaptive radiations in plants.

Reticulate processes often lead to incongruence between
nuclear and plastid phylogenies and discordant phylogenetic his-
tories between independent nuclear loci and/or alleles (Rieseberg
& Soltis, 1991; Doyle, 1992; Wendel & Doyle, 1998; Linder &
Rieseberg, 2004). Cytonuclear discordance has been widely
detected in plants, and continues to be a good first approxima-
tion for the detection of reticulate evolution (e.g. Sang et al.,

1995; Soltis & Kuzoff, 1995; Fehrer et al., 2007; Lundberg et al.,
2009; Pirie et al., 2009; de Kuppler et al., 2015; Scheunert &
Heubl, 2017). That said, incongruence may also be the product
of several other processes, the most frequent being phylogenetic
error and incomplete lineage sorting (ILS) (Pamilo & Nei, 1988;
Rieseberg & Soltis, 1991; Doyle, 1992; Maddison, 1997; Wen-
del & Doyle, 1998). Therefore, to establish hybridization as the
main source of discordance, several approaches have been used to
identify and/or quantify phylogenetic error (e.g. Reid et al.,
2012; Buddenhagen et al., 2016; Arcila et al., 2017), and to dis-
tinguish ILS from hybridization (e.g. Buckley et al., 2006; Mau-
reira-Butler et al., 2008; Joly et al., 2009; Konowalik et al., 2015;
Meyer et al., 2017).

Several species tree methods that model ILS using multilocus
sequence data have been implemented and are now widely used
(reviewed in Edwards et al., 2016; Mirarab et al., 2016; Xu &
Yang, 2016). Additionally, the evaluation and comparison in per-
formance of species tree methods and traditional implementa-
tions, specifically concatenation, have received great attention
(e.g. Warnow, 2015; Edwards et al., 2016; Springer & Gatesy,
2016). Differences between inferred trees from species tree and
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concatenation methods have been explained by the presence of
ILS (Warnow, 2015) or gene tree estimation error (Springer &
Gatesy, 2016). However, recent studies (Sol!ıs-Lemus et al., 2016;
Long & Kubatko, 2018) revealed that species tree and concatena-
tion methods can also be inconsistent in the presence of gene
flow. Moreover, Sol!ıs-Lemus et al. (2016) also showed that phy-
logenetic network methods perform better at finding the species
tree when gene flow is present, indicating that approaches that
can accommodate ILS and gene flow simultaneously should be
applied when studying groups that show patterns of reticulation.

Recently, methods to estimate phylogenetic species networks
from sequence data that incorporate gene-tree uncertainty and
discordance due to ILS and gene flow have been developed (e.g.
Yu et al., 2014; Yu & Nakhleh, 2015; Sol!ıs-Lemus & An!e,
2016; Wen et al., 2016a; Wen & Nakhleh, 2017; Zhang et al.,
2018; Zhu et al., 2018). Although, these methods are still com-
putationally intensive and limited to a small number of species
and reticulation events (Hejase & Liu, 2016), their usage to
detect patterns of reticulation is rapidly increasing (e.g. Wen
et al., 2016b; Copetti et al., 2017; Crowl et al., 2017; Meyer
et al., 2017).

The genus Lachemilla (Focke) Rydb. is a group of about 60
species that includes perennial rosette-forming herbs, stolonifer-
ous herbs, trailing herbs, procumbent herbs, subshrubs, and
dwarf shrubs (Romoleroux, 1996, 2004; Gaviria, 1997; Morales-
Briones et al., 2018a). Lachemilla is distributed between 2200
and 5000 m throughout the high mountains of the western
American tropics from northern Mexico to northern Argentina
and Chile (Gaviria, 1997; Romoleroux, 2004), and is especially
common and diverse in the high-elevation ecosystems of the
northern Andes, where the clade has undergone a rapid ecological
radiation associated with the most recent Andean orogeny
(Morales-Briones et al., 2018a).

Previous phylogenetic analyses based on the internal tran-
scribed spacer of the nuclear ribosomal DNA cistron and the
chloroplast intergenic spacer trnL-F have identified clades within
Lachemilla that correspond in part to traditional, morphologi-
cally defined sections (Gehrke et al., 2008; Morales-Briones et al.,
2018a). Furthermore, Morales-Briones et al. (2018a) identified
four well-supported lineages within Lachemilla. The Tripartite
clade comprises ascending and procumbent herbs with tripartite
leaves that often appear to have five divisions due to the bifid lat-
eral segments of some species (Fig. 1a). The Verticillate clade
includes subshrubs with erect or decumbent stems and reduced
leaves that fuse with the stipules to form verticillate sheaths
(Fig. 1b). The Orbiculate clade encompasses species with a
stoloniferous habit and palmately lobed leaves (Fig. 1c). Finally,
the Pinnate clade includes species with repent or decumbent
stems and pinnate or bipinnatifid basal leaves (Fig. 1d). These
clades are in part congruent with previous morphological classifi-
cations of the group (Perry, 1929; Rothmaler, 1937), but the
relationships among them remain largely unresolved.

Lachemilla also shows widespread signs of hybridization and
polyploidy. Recently, Morales-Briones et al. (2018a) used multi-
ple sources of evidence, including patterns of cytonuclear discor-
dance, detection of outliers, and phylogenic network
reconstruction (from multilabeled trees) to establish evidence of
at least 24 potential hybrid species involving all four major lin-
eages of Lachemilla. Moreover, several of those hybrid species
have been identified as putative allopolyploids (Morales-Briones
et al., 2018a) Chromosome numbers in Lachemilla range from
diploid (e.g. Lachemilla mandoniana: 2n = 16) to dodecaploid
(e.g. Lachemilla jaramilloi: 2n = 96), with several species showing
multiple ploidy levels (Morales-Briones et al., 2018a).

Genomic data provide an excellent opportunity to detect
hybridization (Twyford & Ennos, 2012; Payseur & Rieseberg,

(a) (b)

(c) (d)

Fig. 1 Representative species of the four
major clades of Lachemilla: (a) Tripartite,
L. aphanoides; (b) Verticillate, L. nivalis; (c)
Orbiculate, L. pectinata; and (d) Pinnate,
L. pinnata. Line drawings illustrate
representative leaf morphologies of each
major clade; illustrations modified from
Romoleroux (1996).
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2016); however, in groups where hybridization is widespread
across the clade, phylogenetic data from multiple independent
single- or low-copy nuclear genes is required (Pamilo & Nei,
1988; Sang & Zhang, 1999). Targeted sequence capture and
extensions of these methods allow for the sequencing of hundreds
of low-copy nuclear loci and high-copy genomic targets, like the
chloroplast and/or mitochondrial genomes (Cronn et al., 2012;
Lemmon & Lemmon, 2013; Mandel et al., 2014; Weitemier
et al., 2014; Folk et al., 2015), and have been used in multiple
groups of plants to resolve phylogenetic relationships (e.g.
Stephens et al., 2015; Heyduk et al., 2016; Sass et al., 2016;
Moore et al., 2017) and investigate patterns of hybridization (e.g.
Grover et al., 2015; Crowl et al., 2017; Folk et al., 2017; Garc!ıa
et al., 2017; Kamneva et al., 2017; Mitchell et al., 2017). In this
paper, we use a phylogenomic dataset of 396 nuclear loci and
complete plastomes assembled via targeted sequence capture to
(1) estimate the phylogeny of Lachemilla with a focus on relation-
ships among the major clades, (2) reexamine the source of incon-
gruence between the plastid and nuclear phylogenies using
genome-scale data, and (3) investigate the sources of discordance
among gene trees and species trees. Using a plurality of phyloge-
netic approaches, we find clear evidence of both ancient and
recent gene flow in the group, and demonstrate the necessity of
simultaneously accommodating both ILS and gene flow when
studying groups that show patterns of hybridization.

Materials and Methods

Taxon sampling

We sampled 29 individuals from 27 species of Lachemilla
(Table 1), representing c. 50% of the total described diversity of
the group, and most of the morphological variation within the
four major clades of Lachemilla (Morales-Briones et al., 2018a).
Additionally, two species of Alchemilla, representing the Eurasian
and African clades, one species of Aphanes, and one species of
Fragaria were included as outgroups. Complete voucher informa-
tion is listed in Supporting Information Table S1.

DNA extraction, hybrid enrichment, and sequencing

Total genomic DNA was isolated from fresh, silica-dried, or
herbarium material using the DNeasy Plant Mini Kit (Qiagen,
Valencia, CA, USA) following the manufacturer’s protocol, or
with a modified 29 CTAB method (Doyle & Doyle, 1987). We
used baits designed for Fragaria that target 257 putatively single-
copy orthologous genes (1419 exons) identified in Rosaceae via a
comparison of the apple (Malus), peach (Prunus), and strawberry
(Fragaria) genomes (Kamneva et al., 2017). Genomic DNAs
were sheared by nebulization at 30 psi for 70 s, yielding an aver-
age shear size of 500 bp as measured by a Bioanalyzer High-
Sensitivity Chip (Agilent Technologies Inc., Santa Clara, CA,
USA). Libraries were constructed using the Illumina TruSeq
library preparation kit (Illumina Inc. San Diego, CA, USA) and
NEXTflex DNA barcodes (Bioo Scientific, Austin, TX, USA),
standardized at 2 nM, and pooled in 16-plexes before hybrid

enrichment. Library concentrations were determined using the
KAPA qPCR kit (KK4835) (Kapa Biosystems, Woburn, MA,
USA) on an ABI StepOnePlus Real-Time PCR System (Life
Technologies, Grand Island, NY, USA). Solution-based
hybridization with MYbaits biotinylated RNA baits (MYcroar-
ray, Ann Arbor, MI, USA) and enrichment followed Weitemier
et al. (2014). The target-enriched libraries were then sequenced
on an Illumina HiSeq 2000 with 150 bp paired-end reads at the
Genomics Core Facility at the University of Oregon.

Read processing and assembly

To remove sequencing adaptors and low-quality bases (Phred
scores < 20), demultiplexed reads were cleaned with SEQYCLEAN

v.1.8.10 (https://github.com/ibest/seqyclean) using default set-
tings. Assemblies of nuclear loci were carried out with HYBPIPER
v.1.1 (Johnson et al., 2016) using Fragaria vesca L. exon
sequences as references. Assembly of complete genes was
attempted, but we identified several alignments that included
chimeric gene sequences, likely the product of identifying multi-
ple paralogs from many genes (see Exon assembly subsection);
therefore, we assembled exons individually. Exons with an
expected size ≥ 300 bp were assembled (400 exons from 225

Table 1 Species of Lachemilla sampled in the current study (for complete
voucher information see Supporting Information Table S1)

Taxon Distribution Major cladea Hybridb

L. andina Colombia–Bolivia Tripartite No
L. aphanoides Mexico–Bolivia Tripartite No
L. barbata Peru–Bolivia Pinnate Yes
L. diplophylla Ecuador–Argentina/Chile Pinnate No
L. erodiifolia Colombia–Bolivia Pinnate No
L. fulvescens Venezuela–Peru — Yes
L. galioides Venezuela–Peru Verticillate No
L. hirta Venezuela–Ecuador Tripartite Yes
L. hispidula Colombia–Bolivia Verticillate No
L. holosericea Colombia–Peru — Yes
L. jamesonii Ecuador Tripartite No
L. jaramilloi Colombia–Ecuador Pinnate Yes
L. mandoniana Costa Rica–Bolivia Pinnate No
L. nivalis Venezuela–Ecuador Verticillate No
L. orbiculata Venezuela–Peru Orbiculate No
L. pectinata Mexico–Bolivia Orbiculate No
L. pinnata Mexico–Argentina Pinnate No
L. polylepis Costa Rica–Colombia Verticillate Yes
L. procumbens Mexico–Costa Rica Tripartite Yes
L. pseudovenusta Peru — Yes
L. rupestris Ecuador–Peru — Yes
L. sprucei Colombia–Ecuador Verticillate No
L. talamanquensis Costa Rica — Yes
L. tanacetifolia Venezuela–Bolivia Pinnate No
L. uniflora Colombia–Ecuador — Yes
L. verticillata Costa Rica–Colombia Verticillate Yes
L. vulcanica Mexico–Bolivia Tripartite No

aSpecies without a designated major clade represent inter-clade hybrids/
allopolyploids of two or more clades, as identified by Morales-Briones et al.
(2018a).
bSpecies previously identified as intra-clade hybrids/allopolyploids by
Morales-Briones et al. (2018a).
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genes), and paralog assessment was run for all samples and exons.
Plastome assembly was carried out using ALIGNREADS v.2.5.2
(Straub et al., 2011) in an iterative process. First, all samples were
assembled using the F. vesca chloroplast genome as a reference
(Genbank accession no. JF345175). Then, for all samples, a con-
sensus sequence of this first assembly was used as reference for a
second round of assembly for each sample. The resulting plas-
tome assemblies were annotated using F. vesca and Dasiphora
fruticosa (L.) Rydb. (Genbank accession KC507758) chloroplast
genomes as references in GENEIOUS v.7.1.9 (Kearse et al., 2012).

Nuclear data processing

HYBPIPER assemblies of nuclear loci resulted in multiple copies
for most loci (Table S2). To choose the appropriate gene copy
for downstream analyses, we aligned each exon with MAFFT

v.7.037b (Katoh & Standley, 2013) using the automatic align-
ment strategy, and inferred gene trees for each alignment using
FASTTREE2 (Price et al., 2010) with the ‘-slow’, ‘-gtr’, and ‘-
gamma’ options. Using the resulting gene trees and alignments,
we used a tree-based approach implemented in
PHYLOTREEPRUNER (Kocot et al., 2013) to screen for evidence of
paralogy. The maximal inclusive subtree with a minimum sup-
port of 0.75 and at least 25 taxa, where each taxon was repre-
sented by no more than one sequence, was selected. In cases
where multiple sequences from the same taxon formed a clade,
we retained the longest sequence. Detected paralogs are likely the
product of a whole genome duplication event predating the
diversification of Lachemilla (see the Discussion section), and as a
result, 351 exons have multiple subtrees that met the pruning cri-
teria. Because the output of PHYLOTREEPRUNER is a single align-
ment, we ran the paralog search for each exon after excluding
sequences that were pruned in the first search. When multiple
paralog alignments were obtained for an exon, we kept the align-
ment with the most number of taxa. In some cases, multiple sub-
tree alignments had the same number of taxa, and therefore, we
kept all alignments and treated each exon copy as an independent
locus for downstream analyses. Occasionally, multiple exon
copies that did not form single clades were recovered from some
species (likely representing allopolyploid derived alleles; Morales-
Briones et al., 2018a), preventing PHYLOTREEPRUNER from prun-
ing paralogs. In these cases, we randomly retained only one copy
for those samples, and reran the paralog pruning search. Finally,
individual loci were realigned, and ambiguously aligned positions
were removed with GBLOCKS v.0.91b using default parameters
(Castresana, 2000; Talavera & Castresana, 2007).

Phylogenetic analyses

We used concatenation and coalescent-based methods to recon-
struct the phylogeny of Lachemilla. We performed the nuclear
phylogenetic analyses on four datasets: the COMPLETE dataset
that includes all sampled species, the HYBRID-REDUCED
dataset, which excludes the hybrid species identified previously
by Morales-Briones et al. (2018a), the ORBICULATE-
REDUCED dataset that excludes the hybrid species and the

Orbiculate clade (identified as a hybrid clade; see the Results sec-
tion), and the NO-RECOMBINATION dataset that excludes
the hybrid species and loci that show evidence of recombination
(see Assessment of recombination subsection). For each dataset,
we first estimated phylogenetic relationships using the concate-
nated matrix using RAXML v.8.0.3 (Stamatakis, 2014) with a
partition-by-locus scheme selected using PARTITIONFINDER

v.2.1.1 (Lanfear et al., 2017). All partitions used a GTR +G
model, 100 searches for the best tree were performed, and clade
support was assessed with 1000 bootstrap (BS) replicates. To esti-
mate coalescent-based species trees, we used three different
approaches. First, we used two summary statistic methods:
ASTRAL-II (Mirarab & Warnow, 2015) and MP-EST (Liu
et al., 2010). Individual locus gene trees were estimated using
RAxML with a GTR +G model, 10 searches for the best tree,
and 100 BS replicates to assess clade support. Individual gene
trees and BS replicates were used to estimate species trees in
ASTRAL-II and MP-EST with 100 BS replicates. A third
method, SVDquartets (Chifman & Kubatko, 2014; imple-
mented in PAUP v.4.0a152, Swofford, 2002), which utilizes the
full data to estimate the species trees, was used on the concate-
nated matrix with 100 BS replicates to assess clade support.

For the chloroplast phylogenetic analyses, complete plastome
sequences (excluding one inverted repeat region) were aligned
using the automatic alignment strategy in MAFFT. We used
RAxML with a partition by coding and noncoding regions strat-
egy, as selected using PARTITIONFINDER. All partitions used a
GTR +G model, 100 searches for the best tree were performed,
and clade support was assessed with 1000 BS replicates.

Concordance analyses

To explore discordance between gene tree and species tree esti-
mates, we first calculated the internode certainty all (ICA), a mea-
sure that quantifies the degree of conflict on each node of a target
tree (i.e. species tree estimates) given individual gene trees (Sali-
chos et al., 2014). In addition, we identified the number of con-
flicting and concordant bipartitions on the species trees. ICA
values close to 1 indicate strong concordance in the bipartition of
interest, while ICA values close to 0 indicate equal support for
one or more conflicting bipartitions. Negative ICA values indi-
cate that the bipartitions of interest conflict with one or more
bipartitions that have a higher frequency, and ICA values close to
"1 indicate the absence of concordance for the bipartition of
interest (Salichos et al., 2014). We calculated ICA and the num-
ber of conflicting/concordant bipartitions with PHYPARTS (Smith
et al., 2015), using the estimated species trees as the map tree and
the individual gene trees with a BS support cutoff of 50%. We
also summarized phylogenetic conflict across the genome using a
Bayesian concordance analysis with BUCKy v.1.4.4 (An!e et al.,
2007; Larget et al., 2010). First, we estimated posterior distribu-
tions of individual gene trees with MRBAYES v.3.2.6 (Ronquist
et al., 2012). Analyses consisted of two independent runs with
four Markov chain Monte Carlo chains of 30 million generations
each, sampling every 30 000th generation using a GTR +G
model. Convergence of parameter estimates resulting from the
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two independent Markov chain Monte Carlo runs was assessed
using TRACER 1.6 (Rambaut et al., 2014). Only loci that had
reached convergence by 30 million generations, and which had
complete taxon sampling (excluding Aphanes australis, to increase
the final number of loci), were used for the Bayesian concordance
analysis. BUCKY was run using the posterior distribution of gene
trees after discarding 10% as burn-in, and multiple values of the
a priori discordance parameter (a = 2, 20, 200, 2000), to test for
the impact of this parameter.

Assessment of recombination

Coalescent species tree methods assume that there is no recombi-
nation within loci and free recombination between loci. To deter-
mine the presence of recombination in our dataset, we calculated
the test for recombination, Φ (or pairwise homoplasy index;
Bruen et al., 2006), using PHIPACK (Bruen et al., 2006) with the
default sliding window size of 100 bp. Loci that showed a signal
of recombination were removed (NO-RECOMBINATION
dataset), and the concatenated and species tree inferences were
rerun, as described earlier.

Assessment of hybridization

We used coalescent simulations similar to Folk et al. (2017) to
test whether ILS alone could explain plastid and nuclear incon-
gruence in the COMPLETE dataset. We simulated 10 000 plas-
tid species trees under the coalescent with DENDROPY v.4.1.0
(Sukumaran & Holder, 2010) using the MP-EST species trees as
a guide tree with branch lengths scaled by four to account for
organellar inheritance. Clade frequency of the simulated plastid
genes was obtained by summarizing them on the chloroplast tree
(RAxML tree). In a scenario of ILS alone, we expect to find clades
from the empirical plastid tree to be present in the simulated gene
trees and have a high frequency. By contrast, in a scenario of
hybridization, we expect clades to be unique to the empirical
plastid tree and be absent or at low frequency in the simulated
gene trees (Garc!ıa et al., 2017).

Gene genealogy interrogation analysis

To distinguish incompatible signals regarding the relationship
of the four major clades of Lachemilla, we used gene genealogy
interrogation (GGI; Arcila et al., 2017), a recently described
method that discerns between estimation error and actual bio-
logical conflict explaining gene tree discordance. GGI identifies
the best-supported hypothesis for each locus by enforcing
monophyly of the clades of interest and performing constrained
maximum likelihood searches for each hypothesis. Then,
constrained gene trees are ranked based on their probabilities
estimated using the approximately unbiased topology test
(Shimodaira, 2002). We performed the GGI analyses using
the HYBRID-REDUCED and NON-RECOMBINATION
datasets, and tested the four possible topologies obtained from
the nuclear species trees, chloroplast tree, and concordance
analysis (see Results section).

Species network analysis

We inferred species networks that model ILS and gene flow using
a maximum pseudo-likelihood approach (Yu & Nakhleh, 2015).
Species network searches were carried out with PHYLONET v.3.6.1
(Than et al., 2008) with the command ‘InferNetwork_MPL’ and
using the individual gene trees from the HYBRID-REDUCED
dataset as input. Networks searches were performed using only
nodes in the gene trees that have BS support of at least 75%,
allowing for up to three hybridization events and optimizing the
branch lengths and inheritance probabilities of the returned
species networks under the full likelihood. To estimate the best
number of hybridizations and test whether the species network
fits our gene trees better than a strictly bifurcating species tree, we
computed the likelihood scores of the four tree topologies used in
the GGI analyses, given the individual gene trees, as implemented
in Yu et al. (2012), using the command ‘CalGTProb’ in
PHYLONET (again using individual gene trees and only nodes with
BS support of at least 75%). Finally, we performed model selec-
tion using three information criteria – the Akaike information
criterion (Akaike, 1973), the bias-corrected Akaike information
criterion (Sugiura, 1978), and the Bayesian information criterion
(Schwarz, 1978), – where number of parameters equals the num-
ber of branch lengths being estimated, plus the number of
hybridization probabilities being estimated, and number of gene
trees used to estimate the likelihood, to correct for finite sample
size. We chose as the best model the one with the lowest informa-
tion criterion value. The major tree (also referred to as the back-
bone tree), which is obtained by removing the reticulation
branches with smaller inheritance probabilities from the networks
(Sol!ıs-Lemus & An!e, 2016; Zhu et al., 2016), was obtained from
the best supported network using the function ‘majorTree’ in the
phylogenetic network package PHYLONETWORKS (Sol!ıs-Lemus
et al., 2017).

Data accessibility

Raw Illumina data from sequence capture is available at the
Sequence Read Archive (SRA) under accession SRP132080 (see
Table S1 for individual sample SRA accession numbers). DNA
alignments, phylogenetic trees and results from all analyses and
datasets can be found in the Dryad data repository doi:10.5061/
dryad.vj2s888 (Morales-Briones et al., 2018b).

Results

Exon assembly

The assembly resulted in sequences of up to 392 exons (≥ 300 bp)
per species (Table S2). HYBPIPER identified paralogous copies for
up to 284 exons per species (Table S2). We found up to six par-
alogs per exon in Lachemilla, and identified that these represent
complete gene copies (i.e. all or most species have all copies;
Table S2; Fig. S11). After paralog pruning and removal of exons
with poor coverage across samples (≤ 24 samples), we kept 333
exons from 196 different genes. Additionally, 63 of those exons
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showed the presence of two (60) and three (three) paralogs copies
that met the pruning requirements, giving us a total of 396 loci.
The resulting concatenated matrix had an aligned length of
265 028 bp with 21 004 parsimony-informative sites, a mini-
mum locus size of 277 bp, and a maximum locus size of 5739 bp.
The chloroplast matrix (with one inverted repeat excluded) had
an aligned length of 118 846 bp with 3733 parsimony-
informative sites.

Nuclear phylogenetic analyses: COMPLETE dataset

All analyses recovered the four main clades of Lachemilla pro-
posed by Morales-Briones et al. (2018a), but relationships among
and within the four clades varied in each analysis (Table 2). The
concatenated analysis supports ‘Topology 1’, where the Verticil-
late and Tripartite clades are monophyletic and sister to the clade
formed by the Orbiculate and Pinnate clades (Fig. 2). ASTRAL-
II, SVDquartets, and MP-EST analyses all recovered ‘Topology
2,’ where the Verticillate and Tripartite clades form a clade with
the Orbiculate and Pinnate clades, representing successive sister
groups (Fig. 3). With the exception of the concatenated analyses,
most of the major clades and relationships within and among
them were well supported (BS ≥ 75%). However, the concor-
dance analyses and ICA scores revealed that most gene trees are
actually in conflict with the species trees (Fig. 3). All Bayesian
concordance analyses with different a priori discordance parame-
ter resulted in identical results. BUCKY recovered ‘Topology 3’,
where the Verticillate and Tripartite clades are again mono-
phyletic, with the Pinnate clade and then Orbiculate clade as suc-
cessive sister groups (Fig. 4a). The Bayesian concordance factors
were low for most clades, suggesting a high degree of conflict
among the gene trees (Fig. 4a; for simplified versions of all
topologies, refer to Fig. 6).

Chloroplast phylogenetic analyses and evidence of
hybridization: COMPLETE dataset

Phylogenetic analysis of the plastome dataset also recovered the
four major clades in Lachemilla, but resulted in the fourth dis-
tinct topology with respect to relationships among these four lin-
eages (‘Topology 4’), where the Verticillate clade is sister to a
clade formed by the Orbiculate and Tripartite clades, with the
Pinnate clade sister to all of them (Figs 2, 4b). Most of the

relationships are supported with BS = 100, but the level of discor-
dance between the nuclear and chloroplast trees is high (Figs 2,
4b), with multiple species (e.g. Lachemilla uniflora, Lachemilla
verticillata, Lachemilla fulvescens) located in different clades, and
with different relationships among the four groups. Coalescent
simulations under the organellar model did not produce gene
trees that resembled the observed chloroplast tree. When the sim-
ulated plastid gene trees were summarized on the observed
chloroplast tree, most clade frequencies were 0%, especially for
the clades involving previously detected hybrid species and for
the clades formed by the four major groups of Lachemilla
(Fig. 4b). This clearly suggests that ILS alone cannot explain the
high level of cytonuclear discordance observed in Lachemilla.

Nuclear phylogenetic analyses: HYBRID-REDUCED dataset

With previously identified hybrid species (Morales-Briones et al.,
2018a) removed, the concatenated and ASTRAL-II analyses both
recovered ‘Topology 1’, but BS support for the sister group rela-
tionship of the Pinnate and Orbiculate clades was low (63% and
21% respectively; Figs 5a, S1). Although relationships within
each major clade were identical in these analyses, the ASTRAL-II
analysis recovered low support for relationships within the Verti-
cillate clade (Fig. 5a). SVDquartets and MP-EST analyses both
recovered ‘Topology 2’ with high BS for all clades (Figs 5b, S2).
Relationships within the major clades were constant in both anal-
yses, but the position of Lachemilla sprucei in the Verticillate
clade and Lachemilla tanacetifolia in the Pinnate clade varied with
respect to the concatenated and ASTRAL-II topologies (Fig. 5).
Concordance analyses and ICA scores continue to reveal a high
level of incongruence between individual gene trees and species
tree estimations, even after the removal of the previously identi-
fied hybrids. As with the ASTRAL-II and concatenated analyses,
BUCKY analyses of this dataset recovered ‘Topology 1’, and con-
cordance factors remain low for most clades (Fig. S3).

Recombination analyses

The test for recombination, Φ, identified 131 loci with a strong
signal of recombination for the HYBRID-REDUCED dataset
(P < 0.05; Table S3). Concatenated, MP-EST, SVDquartets and
BUCKY phylogenetic analyses of the NO-RECOMBINATION
dataset (after removal of recombinant loci) recovered identical

Table 2 Datasets used in this study, indicating the number of taxa, number of loci, and topology (following Fig. 6) recovered for Lachemilla in each
analysis

Dataset Number of taxa

Number of loci/Topology recovered

Concatenation (RAxML) ASTRAL-II MP-EST SVDquartets BUCKY Chloroplast (RAxML)

COMPLETE 29 396/1 396/2 396/2 396/2 208/3 1/4
HYBRID-REDUCED 15 396/1 396/1 396/2 396/2 219/1 1/4
NO-RECOMBINATION 15 265/1 265/2 265/2 265/4 160/1 NA/NA
ORBICULATE-REDUCED 13 396/NA 396/NA 396/NA 396/NA 221/NA 1/NA

NA, not applicable.
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topologies to the analyses of the HYBRID-REDUCED dataset
with all loci included. As in the HYBRID-REDUCED dataset,
‘Topology 1’ was inferred for all analyses, with the exception of
the ASTRAL-II analysis, where ‘Topology 2’ was recovered
(Fig. S4).

Gene genealogy interrogation and network analysis:
HYBRID-REDUCED dataset

The GGI analysis indicated the largest support for ‘Topology 3’,
with 73 gene trees supporting this topology; however, this analy-
sis also shows that the majority of gene trees do not provide sig-
nificant support for any of the four alternative topologies
(P < 0.05; Fig. 6; Table S4). GGI analysis of the NO-
RECOMBINATION dataset showed similar results (Fig. S5;
Table S5).

Species network analyses recovered topologies with up to three
hybridization events. All networks recovered the four major
clades of Lachemilla (Fig. S6), with the Orbiculate clade always
identified as a reticulate node. All three information criteria indi-
cated that the species networks with hybridization events involv-
ing the Orbiculate clade provided a better fit for our data than
any of the four strictly bifurcating hypotheses (Table 3; Fig. 6).
The network with two hybridization events (Fig. 7a) had the best
support for the three information criteria. With this best species
network, the first reticulation event involves Lachemilla
aphanoides and rest of the Tripartite clade. The inheritance

probabilities show that the ancestral lineage of the clade formed
by Lachemilla andina, Lachemilla jamesonii, and Lachemilla
vulcanica has a genomic contribution of 38.8% from
L. aphanoides. The second reticulation event also reveals ancestral
gene flow in the Orbiculate clade. Inferred inheritance probabili-
ties for this event indicate that the largest genomic contribution
to the Orbiculate clade (86.3%) comes from an ancestral lineage
of the Tripartite clade, and only a small portion (13.7%) comes
from an ancestral or unsampled lineage within the Pinnate clade.
The major tree obtained from the best supported network shows
‘Topology 4’.

Phylogenetic analyses: ORBICULATE-REDUCED dataset

After the removal of the Orbiculate clade, all phylogenetic analy-
ses recovered the same well-supported topology with the Verticil-
late and Tripartite clades sister to each other, and the Pinnate
clade sister to that clade (Figs 7b, S7–S10). Despite this consis-
tent result, the levels of gene tree discordance with this topology
were still high, especially with respect to relationships within the
Verticillate and Pinnate clades.

Discussion

Our results show clear evidence of cytonuclear discordance and
extensive conflict between individual gene trees and species trees
in Lachemilla. Moreover, we established that these conflicts are
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the product of both ancient and recent hybridization throughout
the evolutionary history of the group. We also established that
the conflict between different species tree estimations is not a
product of phylogenetic error, but rather the presence of ancestral
gene flow. Specifically, using a phylogenetic network approach
that can accommodate ILS and hybridization simultaneously, we
determined that the Orbiculate clade, one of the four major lin-
eages of Lachemilla, may be of ancient hybrid origin. Further-
more, we found evidence for a whole genome duplication event
shared by Lachemilla and allied genera. These findings are
discussed in detail below.

Cytonuclear discordance and evidence of hybridization

Evidence of extensive hybridization has been previously detected
in Lachemilla, with at least 24 species identified as hybrids
(Morales-Briones et al., 2018a). The extensive analyses performed
here revealed a similar pattern of cytonuclear discordance, where
the hybrid species (Table 1) were recovered in different positions
between the nuclear and chloroplast phylogenies, with some of
these species (e.g. L. fulvescens and Lachemilla talamanquensis)
having placements with very low support (Fig. 1). Additionally,
the Bayesian concordance analysis and ICA scores revealed a large

amount of conflict between individual gene trees and the species
tree estimates. Although these patterns may also be attributable
to other processes, like ILS and phylogenetic error, our coalescent
simulations showed that the observed cytonuclear discordance
cannot be explained by ILS alone; furthermore, this is emerging
as a common pattern in plant systems (e.g. Maureira-Butler et al.,
2008; Blanco-Pastor et al., 2012; Reginato & Michelangeli,
2016; Folk et al., 2017; Garc!ıa et al., 2017; Vargas et al., 2017).

Although removal of identified hybrid lineages reduces con-
flicting signals across gene trees, ICA values and concordance fac-
tors indicate that discordant signals are still persistent for some
clades, suggesting that ILS and/or unidentified hybrid lineages
continue to obscure our understanding of relationships in
Lachemilla. For example, species like Lachemilla diplophylla,
L. sprucei, and L. tanacetifolia, which have not previously been
identified as hybrid taxa, show conflicting positions between
species tree estimates and the chloroplast tree, suggesting that
these species may also be of hybrid origin.

Additional work identifying parental lineages of putative
hybrid species using allelic information from single-copy nuclear
genes – for example, statistical phasing of alleles from sequence
capture data and/or isolating individual alleles via molecular
cloning and/or bioinformatically from high-throughput
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amplicon datasets (e.g. Pyron et al., 2016; Uribe-Convers et al.,
2016; Motazedi et al., 2017; Rothfels et al., 2017; Blischak et al.,
2018) – remains to be done in Lachemilla. Kamneva et al. (2017)
implemented a pipeline to assemble single-copy nuclear gene
haplotypes from sequence capture data, but the presence of mul-
tiple gene copies in Lachemilla and relatives (Fig. S11, Table S2)
makes this task a nontrivial problem that deserves further explo-
ration.

Discordance among individual gene trees and species trees

Our analysis of concordance also reveals that a significant number
of bipartitions on individual gene trees are not well supported,
implying low phylogenetic information in the sampled loci.
However, low support values can also be the product of the inclu-
sion of hybrid lineages, and the removal of these taxa from our
analyses does result in a general improvement of support mea-
sures (although a significant amount of weakly supported biparti-
tions is still recovered; Fig. 4). Our species tree analyses produced
well-supported and congruent trees after the removal of hybrid
taxa, suggesting that the low phylogenetic signal in the individual
gene trees is not necessarily negatively affecting species tree esti-
mation, as has been seen in other studies that use capture data
(e.g. Blom et al., 2017; Mitchell et al., 2017).

Although the four main well-supported clades of Lachemilla
have been previously recognized, relationships among these
clades have remained largely unresolved (Morales-Briones et al.,

2018a). Our phylogenetic analyses recover the same four major
lineages; however, depending on the dataset used and the phylo-
genetic approaches employed, these relationships vary consider-
ably. Phylogenetic analyses of the COMPLETE dataset
recovered four distinct topologies, and even after removal of
previously identified hybrid species three of those topologies
were consistently recovered (Table 2; Fig. 6). The major differ-
ence between these hypotheses is with respect to the placement
of the Orbiculate clade that, with the exception of chloroplast
tree, is associated with low concordance and support values,
suggesting that the Orbiculate clade might be involved in a
hybridization event.

Although recombination was detected for > 30% of the
loci, our analyses with these loci removed (NO-
RECOMBINATION dataset) were largely the same as with
them included. Some studies (e.g. Gatesy & Springer, 2013;
Springer & Gatesy, 2016) argue that recombination might
affect coalescent-based phylogenetic analyses, but simulation
studies have shown that methods for species tree inference
may be largely robust to intra-locus recombination (Lanier &
Knowles, 2012; Wang & Liu, 2016), and a recent empirical
study showed that, despite a large amount of recombinant
loci (~ 42%), ASTRAL-II still recovered the same topology
with these loci included or excluded from species tree analyses
(Folk et al., 2017). With respect to our ASTRAL-II analyses,
the only difference with and without recombinant loci is
again in the placement of the Orbiculate clade.
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Phylogenetic networks model gene flow between populations,
and this gene flow can be in the form of hybridization, introgres-
sion, or horizontal gene transfer. Although these processes are
biologically different, phylogenetic networks model these reticu-
lation processes in the same way, and do not distinguish between
them (Sol!ıs-Lemus & An!e, 2016). Based on inheritance probabil-
ities, Sol!ıs-Lemus et al. (2017) suggest that a small contribution
(~ 0.10) from a parental population to a reticulate node may sug-
gest introgression, as seen in species of the North American
columnar cacti (Copetti et al., 2017). On the other hand, inheri-
tance probabilities close to 0.50 may suggest that the reticulate
node is the product of hybrid speciation between the parental
populations. Crowl et al. (2017), based on near-equal inheritance
probabilities and genome size estimation, showed the hybrid
(allopolyploid) origin of an octoploid lineage of Campula erinus
L. (Campanulaceae). Our results show that the parental contribu-
tions to the reticulation events detected in Lachemilla (Fig. 7a)
are unequal. Within the Tripartite clade, the inheritance contri-
butions (0.388 and 0.612) support a hybridization event between
L. aphanoides and the ancestral lineage of the rest of species of the
Tripartite clade. The second reticulation event reveals that there
has been extensive gene flow between the Orbiculate clade and

the Tripartite and the Pinnate clades. Given extensive history of
hybridization and allopolyploidy in Lachemilla (Morales-Briones
et al., 2018a), we argue that the Orbiculate clade may be of
hybrid origin between ancestral lineages of the Tripartite and the
Pinnate clades. However, given the small inheritance contribu-
tion from the Pinnate clade (0.137), it is also plausible that ances-
tral gene flow from the Pinnate clade to the Orbiculate clade (or
an ancestral lineage of this clade) could also produce this result
(Fig. 7). It is also important to keep in mind, as noted by Sol!ıs-
Lemus et al. (2017), that inheritance probabilities can be altered
by many biological factors, and additional biological information
is necessary for a robust interpretation of these values.

The varying placements of the Orbiculate clade when analyz-
ing different datasets and/or using different approaches to esti-
mate the species tree seems to be primarily the product of the
inconsistency of species tree estimation in the presence of gene
flow (Sol!ıs-Lemus et al., 2016; Long & Kubatko, 2018). Our
network analysis of the HYBRID-REDUCED dataset using
PHYLONET revealed that all models involving reticulation events
fit our data better than any model with strict bifurcating trees
(Table 3). When the major tree (Fig. 7b), which displays the
major vertical inheritance pattern in the data (Sol!ıs-Lemus et al.,
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2016), is extracted from our best supported network, we can see
that this tree displays ‘Topology 4’, indicating that the majority
of the genome is congruent with the chloroplast tree, where the
Orbiculate and Tripartite clades are sisters (Fig. 2). This is in
direct conflict with our model selection results that show ‘Topol-
ogy 4’ is the worst model (Table 3), indicating that designating a
strictly bifurcating tree to Lachemilla might not be adequate. Fur-
thermore, Zhu et al. (2016) found that, in the presence of deep
coalescence, the most likely gene tree is not necessarily one of the
backbone (major) trees inside the network. These empirical
results corroborate simulation studies that have shown that phy-
logenetic species network methods that simultaneously model

discordance due to ILS and hybridization should be the preferred
approach for investigating phylogenetic relationships in groups
where gene flow is prominent (Sol!ıs-Lemus et al., 2016).

Because of the large amount of conflict between gene trees, we
also used GGI (Arcila et al., 2017) to assess the potential for gene
tree estimation error as the reason for the pattern of incongruence
among species tree topologies. Although this method can be use-
ful for distinguishing between estimation error and actual biolog-
ical conflict in explaining gene tree discordance, as pointed out
by Arcila et al. (2017), additional analyses are necessary to cor-
rectly interpret the signal of gene tree discordance when other
processes like ILS or hybridization might also contribute to the
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Table 3 Model selection between the different species trees and species networks recovered for Lachemilla

Topology Loge L Parameters Loci Number of hybridizations

Information criterion

AIC AICc BIC

Tree topology 1 "6147.752 35 222 NA 12365.504 12379.052 12484.598
Tree topology 2 "6156.017 35 222 NA 12382.035 12395.583 12501.128
Tree topology 3 "6148.437 35 222 NA 12366.874 12380.423 12485.968
Tree topology 4 "6262.415 35 222 NA 12594.831 12608.379 12713.924
Network 1 "6083.621 36 222 1 12239.243 12253.643 12361.738
Network 2 "6072.542 37 222 2 12219.084 12234.266 12344.983
Network 3 "6092.135 39 222 3 12262.269 12279.412 12394.974

The model with the lowest information criterion was selected as the best one (highlighted in bold). Topological hypotheses follow Fig. 6.
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observed conflict. In our case, GGI selects ‘Topology 3’ as the
hypothesis with the highest support from individual gene trees
(Fig. 6), but it is likely that this topology was chosen over the
alternative hypotheses, because by placing the Orbiculate clade
sister to the rest of Lachemilla, it removes the source of conflict
between the other three clades. This interpretation is corrobo-
rated by the convergence on the same topology by all phyloge-
netic methods using the dataset with Orbiculate clade removed
(Fig. 7c).

Relationships among major clades of Lachemilla and
systematic implications

Based mainly on foliar characters, Perry (1929) divided
Lachemilla into six groups, and recent phylogenetic analyses
recover four main clades of Lachemilla that have a partial corre-
spondence with four of Perry’s groups (Morales-Briones et al.,
2018a). This partial correspondence is the product of the inclu-
sion of a number of species, now recognized to be of hybrid
origin from taxa in distinct groups that have incongruent posi-
tions in molecular phylogenies. The other two groups (both
monotypic – Lachemilla polylepis and L. diplophylla) were found
to be distinctive members of two of the major clades, where
L. polylepis belongs to the Verticillate clade and L. diplophylla to
the Pinnate clade, although in both cases these species have differ-
ent overall morphologies when compared with the rest of the

clade. Although, these major clades were identified with strong
support by Morales-Briones et al. (2018a), relationships between
them remained unresolved, probably due to the limited amount
of DNA sequence data used, as well as the hybrid origin of the
Orbiculate clade identified here.

Our analyses strongly support the sister group relationship of
the Verticillate and Tripartite clades (Fig. 7c). The Verticillate
clade, mainly characterized by the highly modified leaf blades
that fuse with the stipules to simulate a whorl of simple, elongate
leaves, was considered by Perry (1929) as transition from the Tri-
partite clade, which has tripartite leaves that often appear to have
five divisions due to the bifid lateral segments of some species
and usually bifid, leaf-like stipules. Gaviria (1997) also recog-
nized this leaf transition, although it is worth noting that some of
the species used to identify this transition correspond to hybrid
species between the two groups (Morales-Briones et al., 2018a).

The Tripartite clade as defined by Perry (1929; series
Aphanoides) was subdivided into six subgroups, where four of
them are actually composed of only hybrid species between this
group and the other three major clades, while the other two cor-
respond to the Tripartite clade (Morales-Briones et al., 2018a).
Here, we identified an additional hybridization event between
L. aphanoides and an extinct or unsampled lineage that led to a
clade of three species. Interestingly, L. aphanoides belongs to one
of the two Tripartite clades that is characterized by glomerulate
inflorescences, while the other three species belong to the second
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Fig. 7 (a) Best supported species network of the HYBRID-REDUCED dataset inferred with PHYLONET. Numbers next to the hybrid branches indicate
inheritance probabilities. (b) Major tree obtained from the best supported species network. Dotted lines represent minor hybrid edges (edges with an
inheritance contribution < 0.50). (c) Species tree of the ORBICULATE-REDUCED dataset inferred with ASTRAL-II. Maximum likelihood bootstrap support
values and internode certainty all scores are shown above and below branches respectively. Pie charts next to the nodes represent the proportion of gene
trees that support that clade (blue), the proportion that support the main alternative for that clade (green), the proportion that support the remaining
alternatives (red), and the proportion (conflict or support) that have < 50% bootstrap support (gray). Numbers next to pie charts indicate the number of
gene trees concordant/conflicting with that node in the species tree.
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Tripartite clade that is characterized by loose inflorescences and
pubescence in the inner part of the hypanthium; several
hybridization events between species of these two clades within
the Tripartite clade were also identified by Morales-Briones et al.
(2018a), and Notov & Kusnetzova (2004) found the distinction
of these two groups rather ambiguous, likely due to the promis-
cuity of members of this clade with respect to interspecific
hybridization.

Perry (1929) interpreted the Orbiculate clade (series Orbicu-
latae), characterized by species with a stoloniferous habit and pal-
mately lobed leaves, as most closely related to series Aphanoides,
again probably due to the presence of numerous hybrid species
between the Tripartite and Orbiculate clades. Here, we find evi-
dence for the hybrid origin of the Orbiculate clade, with genomic
contributions from taxa of the Pinnate and Tripartite clades
(Fig. 7a). Multiple regional treatments (e.g. Rothmaler, 1935;
Gaviria, 1997) have proposed infrageneric groups within
Lachemilla that do not reflect phylogenetic relationships, and
often several hybrid species and/or species belonging to the
Orbiculate clade are used as transitional states for these groups.
Thus, it is significant that our analyses have clarified the role that
hybridization has played in the morphological complexity of
Lachemilla, and especially in future taxonomic treatments of the
clade.

Multiple gene copies and evidence of whole genome
duplication

All loci targeted in this study appear to be single-copy genes in
Fragaria and across Rosaceae (Kamneva et al., 2017); however,
our results show that > 70% of these loci have multiple copies in
Lachemilla, Alchemilla, and Aphanes (Table S2; Fig. S11). A simi-
lar pattern of multicopy genes recovered from exon capture data
has been reported in Artocarpus (Moraceae; Johnson et al., 2016),
which is known to have undergone at least one whole genome
duplication (Gardner et al., 2016). This suggests that the pattern
detected in Lachemilla, Alchemilla, and Aphanes might also be the
result of an ancient whole genome duplication that predates the
diversification of the clade. While, there is not apparent doubling
in chromosome number to support this whole genome duplica-
tion (as in Artocarpus; Gardner et al., 2016), Lachemilla,
Alchemilla, and Aphanes are the only members of subtribe Fra-
gariinae that have a haploid chromosome number of eight instead
of seven (Lundberg et al., 2009). Although, this change could
potentially be explained by dysploidy alone, there is evidence in
other groups of Rosaceae that have undergone dysploidy follow-
ing a whole genome duplication event (e.g. Evans & Campbell,
2002). Although, we do not have definitive evidence for this in
Lachemilla and relative genera, it remains a plausible hypothesis,
and more detailed studies of chromosome evolution in the clade
are warranted. Moreover, in a recent transcriptome-based phy-
logenomic analysis of Rosaceae, Xiang et al. (2017) identified
multiple whole genome duplication events across the family, and
> 33% of genes used in their analyses showed evidence of dupli-
cation in the two species of Alchemilla sampled in their study.
The precise phylogenetic position of this putative duplication

remains unresolved until additional members of subtribe Fragari-
inae (including Alchemilla and Aphanes) are sampled, and statisti-
cal methods to detect whole genome duplications are applied
(e.g. Jiao et al., 2011; Rabier et al., 2014; Huang et al., 2016;
Tiley et al., 2016).

Conclusions

Gene flow, in the form of hybridization and introgression, is a
common pattern, and has played a fundamental role in the evolu-
tion of animals and plants (Soltis & Soltis, 2009; Mallet et al.,
2016; Payseur & Rieseberg, 2016). However, when investigating
the evolutionary history of species, typically, strictly bifurcating
species tree methods that account only for ILS are applied, and
the potential impact of gene flow is not taken in account during
the inference process. Moreover, mounting evidence that species
tree methods are inconsistent in the presence of gene flow (Sol!ıs-
Lemus et al., 2016; Long & Kubatko, 2018) demonstrates the
need to incorporate methods that account for ILS and gene flow
simultaneously in phylogenetic studies. Here, we present a clear
example of the utility of these methods to clarify the evolutionary
history of Lachemilla. Our results provide strong evidence that
both ancient and recent hybridization events have shaped the
evolutionary history of this group. Reticulation, in addition to
ILS, has resulted in extensive gene tree discordance, and has
obscured phylogenetic inference in this group. Furthermore, dis-
cordance among species tree estimations in Lachemilla, due to
gene flow, demonstrates the need for phylogenetic network
approaches when studying groups that show patterns of reticula-
tion. The recent explosion of new methods to estimate phyloge-
netic species networks (e.g. Yu et al., 2014; Yu & Nakhleh, 2015;
Sol!ıs-Lemus & An!e, 2016; Wen et al., 2016a; Wen & Nakhleh,
2017; Zhang et al., 2018; Zhu et al., 2018) will facilitate more
comprehensive studies of reticulation in groups like Lachemilla.
Moreover, with the emergence of approaches for performing phy-
logenetic comparative methods on networks (Jhwueng &
O’Meara, 2015; Bastide et al., 2017), we hope the results pre-
sented here will help us to investigate broad questions regarding
trait evolution, biogeography, and diversification dynamics in
Lachemilla, as well as an evolutionarily informed classification
system that reflects the complex (reticulate) history of the group.
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