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The promise of a comprehensive view of extant diversity, whether 
for a single clade or the entire tree of life, has been a major moti-
vation of the systematics community for decades—arguably centu-
ries. Not only does a more complete view of the tree of life excite 
the imagination of both evolutionary biologists and the public, but 
broader and more complete phylogenies allow the exploration of 
evolutionary, biogeographic, and ecological questions at a scope that 
cannot be achieved with smaller phylogenies (Smith and Beaulieu, 
2009; Goldberg et al., 2010; Edwards et al., 2010; Smith et al., 2011; 
Rabosky et al., 2013; Cornwell et al., 2014; Zanne et al., 2014; Tank 
et  al., 2015; O’Meara et  al., 2016). Individual, thoroughly studied 

systems are fundamentally important to evolutionary research and 
provide unprecedented details that facilitate in- depth analyses and 
exploration. Large- scale phylogenetic analyses often contain more 
variation and error, but provide different perspectives that often 
address entirely different questions. Both large-  and small- scale 
phylogenetic studies can be useful for addressing and developing 
evolutionary hypotheses.

The first large seed plant phylogeny (Chase et al., 1993) paved 
the way for what would become an important research component 
for plant phylogenetics and evolution. Large phylogenetic trees 
have been used in plants to address rates of molecular evolution 

INVITED SPECIAL ARTICLE
For the Special Issue: Using and Navigating the Plant Tree of Life

Constructing a broadly inclusive seed plant phylogeny
Stephen A. Smith1,2  and Joseph W. Brown1

R E S E A R C H  A R T I C L E

Manuscript received 8 August 2017; revision accepted 19 October 
2017.
1 Department of Ecology and Evolutionary Biology, University of 
Michigan, Ann Arbor, Michigan, 48109, USA
2 Author for correspondence (e-mail: eebsmith@umich.edu)

Citation: Smith, S. A., and J. W. Brown. 2018. Constructing a broadly 
inclusive seed plant phylogeny. American Journal of Botany 105(3): 
302–314.

doi:10.1002/ajb2.1019

PREMISE OF THE STUDY: Large phylogenies can help shed light on macroevolutionary patterns 
that inform our understanding of fundamental processes that shape the tree of life. These 
phylogenies also serve as tools that facilitate other systematic, evolutionary, and ecological 
analyses. Here we combine genetic data from public repositories (GenBank) with phyloge-
netic data (Open Tree of Life project) to construct a dated phylogeny for seed plants.

METHODS: We conducted a hierarchical clustering analysis of publicly available molecular 
data for major clades within the Spermatophyta. We constructed phylogenies of major 
clades,  estimated divergence times, and incorporated data from the Open Tree of Life project, 
resulting in a seed plant phylogeny. We estimated diversification rates, excluding those taxa 
without molecular data. We also summarized topological uncertainty and data overlap for 
each major clade.

KEY RESULTS: The trees constructed for Spermatophyta consisted of 79,881 and 353,185 
terminal taxa; the latter included the Open Tree of Life taxa for which we could not include 
molecular data from GenBank. The diversification analyses demonstrated nested patterns of 
rate shifts throughout the phylogeny. Data overlap and inference uncertainty show signif-
icant variation throughout and demonstrate the continued need for data collection across 
seed plants.

CONCLUSIONS: This study demonstrates a means for combining available resources to 
construct a dated phylogeny for plants. However, this approach is an early step and more 
developments are needed to add data, better incorporating underlying uncertainty, and 
improve resolution. The methods discussed here can also be applied to other major clades in 
the tree of life.

  KEY WORDS   clustering; divergence-time estimation; diversification; GenBank; Open Tree of 
Life; phylogenetics; phylogenetic methods; plant tree of life; seed plants.

http://orcid.org/0000-0003-2035-9531
http://orcid.org/0000-0002-3835-8062
mailto:eebsmith@umich.edu)


 March 2018, Volume 105 • Smith and Brown—Constructing a broadly inclusive seed plant phylogeny • 303

(Smith and Donoghue, 2008), ecological questions (Beaulieu et al., 
2012; Cornwell et al., 2014), evolution of climate tolerance (Smith 
and Beaulieu, 2009; Edwards and Smith, 2010; Edwards et al., 2010; 
Zanne et al., 2014), flower evolution (O’Meara et al., 2016; Sauquet 
et al., 2017), genome duplications (Tank et al., 2015; Smith et al., 
2017), and diversification (Smith et al., 2011). While these studies 
contributed to discussions about large- scale patterns of plant evo-
lution, caution needs to be practiced when interpreting them and 
improvements in the underlying phylogenies will continue to in-
crease their utility and accuracy (Beaulieu et al., 2012; Hinchliff and 
Smith, 2014; Edwards et al., 2015).

Researchers have constructed these enormous phylogenies 
in several ways. For example, many researchers have conducted 
analyses of publicly available molecular data in NCBI’s GenBank 
(Driskell et al., 2004; McMahon and Sanderson, 2006; Smith et al., 
2011; Bocak et al., 2013). While some focused on constructing data 
sets for specific gene regions such as 18S or rbcL, others have con-
structed data sets intended for supermatrix analysis (Hibbett et al., 
2005; Goloboff et al., 2009). Tools such as PhyLoTa were developed 
to automate and pre- calculate clusters of data for clades in the tree 
of life and provide a means of browsing the results of these analyses 
(Sanderson et al., 2008). Smith et al. (2009) developed PHLAWD 
to conduct a so- called “baited” analysis where gene regions may 
be identified a priori thereby dramatically speeding up clustering 
analyses. This procedure was extended with PUmPER to allow 
for automatic updating when new sequences become available 
(Izquierdo- Carrasco et al., 2014). Several newly developed software 
packages have built on these methods including SUMAC (Freyman, 
2015) that incorporates both “baited” analyses and single- linkage 
clustering methods as well as a novel means of determining when 
there are enough overlapping data, and SUPERSMART (Antonelli 
et al., 2017) that includes analyses from clustering to divergence- 
time estimation. Recently, analyses that can accommodate DNA 
barcoding sequences have also been developed (Chesters, 2017).

While methods have been developed to analyze publicly availa-
ble data, molecular data are not available for all taxa. To overcome 
this challenge when constructing comprehensive phylogenies, re-
searchers have synthesized other sources. Jetz et  al. (2012) com-
bined molecular data available in public databases with taxonomic 
information for data- deficient taxa to construct a comprehensive 
phylogeny of Aves. Beaulieu et al. (2012) manually synthesized phy-
logenies to construct a tree that could be used for comparative eco-
logical studies. More recently, the Open Tree of Life presented a draft 
tree of all life constructed from a synthetic taxonomy and a phy-
logenetic synthesis analysis based on sets of published phylogenies 
contributed and curated by the community of systematists (Smith 
et al., 2013; Hinchliff et al., 2015; Redelings and Holder, 2017). The 
taxonomy, called OT- taxonomy, was constructed through combin-
ing taxonomies from different sources (e.g., NCBI, and domain- 
specific resources) while excluding “nonphylogenetic” taxa (e.g., 
incertae sedis). OT- taxonomy attempts to be comprehensive and 
is updated as component taxonomies are updated or as refinement 
edits are contributed (Rees and Cranston, 2017). The Open Tree of 
Life project also has resources that allows researchers to contribute 
phylogenies (McTavish et  al., 2015) that can then be synthesized 
into a comprehensive tree of life (Hinchliff et  al., 2015). In addi-
tion to the updates provided by the community, synthesis methods 
that combine phylogenies and taxonomy also continue to improve 
(Redelings and Holder, 2017). In this study, we aimed to use these 
resources along with other molecular data to construct resolved and 

dated “comprehensive” phylogenies. Here, by “comprehensive”, we 
mean that the trees include the taxa in the Open Tree of Life tax-
onomy, regardless of whether these taxa have molecular data avail-
able. However, many clades may still require significant taxonomic 
revision or examination to determine species composition. Smaller 
scale studies that detail the systematics within these clades will con-
tinue to improve the taxonomies and phylogenies.

One consistent limitation of the synthetic trees produced by the 
Open Tree of Life project is the lack of branch lengths, whether mo-
lecular or relative to divergence times (Hinchliff et al., 2015). While 
branching order informs how species are related, branch lengths 
are necessary for conducting many other downstream compara-
tive analyses. Calibrations, in the form of fossil data or secondary 
calibrations, necessary for conducting divergence time analyses are 
available through public resources such as the paleobioDB (https://
paleobiodb.org; http://fossilworks.org), Fossil Calibration Database 
(Ksepka et al., 2015), TimeTree (Hedges et al., 2006), and DateLife 
(http://datelife.org) projects. These may be useful for large compre-
hensive phylogenetic projects such as the Open Tree of Life, but 
have yet to be incorporated. There are other ways in which branch 
lengths, relative to time, can be incorporated into large phylogenies. 
For example, tools such as CONGRUIFY (available in the R package 
GEIGER v. 2 [Harmon et al., 2008; Pennell et al., 2014]) generate 
secondary calibrations from a dated tree and apply them to an un-
dated tree (Eastman et al., 2013).

Here, we present a draft phylogeny for seed plants that includes 
divergence times. We used a hierarchical divide- and- conquer ap-
proach for constructing data sets using publicly available molecular 
data and combine these data sets with the Open Tree of Life results. 
We then used existing resources to help calibrate and date the phy-
logenies we construct. While this phylogeny may be used for several 
purposes, as a preliminary exploration, we discuss patterns of di-
versification and areas of phylogenetic uncertainty. We also discuss 
significant limitations in the existing data and the need for further 
developments moving forward.

MATERIALS AND METHODS

Data description

We used the available information in GenBank release 218 (ftp://
ftp.ncbi.nlm.nih.gov/genbank) as downloaded and processed by 
phlawd_db_maker (available at https://github.com/blackrim/
phlawd_db_maker). With some exceptions, we excluded most se-
quences with fewer than 600 bp because we found many of these 
to have incorrect species identifications or insufficient information 
for resolution (see Discussion for more details). This problem was 
often worse in more complex and speciose clades. We also excluded 
genomic sequences (often in the form of mitogenomes or plas-
tomes) because the size of the large sequences precludes efficient 
incorporation.

We used the Open Tree of Life synthetic tree release 9.1 and 
taxonomy version 3, which researchers can obtain from the Open 
Tree of Life website (https://tree.opentreeoflife.org/about/synthe-
sis-release/v9.1). We noted some errors in the tree that needed to 
be fixed for our merging procedure to work correctly (procedure 
described below). For example, the Sapindales in release 9.1 of the 
Open Tree of Life synthetic tree is nonmonophyletic, and as a re-
sult, many of the taxa in that clade were found at the base of the 
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eudicots. We removed these taxa because many would be added 
by molecular data. Our edited tree can be found at https://github.
com/FePhyFoFum/big_seed_plant_trees along with the other data 
used for the project. Improvements and issues may be contributed 
at this website to continue updating and refining the phylogenies. 
We also obtained the time- calibrated phylogeny comprising 798 
Spermatophyta taxa by Magallón et al. (2015) and used the inferred 
divergence times as secondary calibrations for our analyses (more 
details in Divergence time estimation below).

Data set and phylogeny construction

To construct a comprehensive phylogeny, we conducted a hierar-
chical analysis with individual phylogenies constructed for major 
clades (listed in Appendix S1, see Supplemental Data with this ar-
ticle) and placed into context based on the Open Tree of Life and 
Magallón et al. (2015). This procedure resulted in two comprehen-
sive seed plant phylogenies: one with the deep branches resolved 
according to Magallón et al. (2015) and one with the deep branches 
resolved according to the Open Tree of Life release 9.1. We devel-
oped a new software package, PyPHLAWD, to construct data sets 
for each major clade of seed plants (see Appendix S1 for a list of 
clades). We describe the general procedure as it relates to these anal-
yses here (see Fig. 1).

For each individual major clade, we conducted the following 
analyses. First, PyPHLAWD constructed folders for each clade, 
identified by NCBI taxonomy, within the major clade of interest. For 
example, for Apiales, PyPHLAWD constructed folders for Apiineae, 
Griseliniaceae, Pennantiaceae, and Torricelliaceae. Within each of 

these, PyPHLAWD then constructed folders for their respective 
subclades (e.g., within Apiineae, folders for Apiaceae, Araliaceae, 
Myodocarpaceae, and Pittosporaceae were created) and so on. 
Within the folder of the most nested clade, PyPHLAWD placed all 
sequences of the contained taxa. For example, the folder for genus 
Sanicula within the Apiales contained a file with 178 sequences. 
PyPHLAWD then conducted a clustering analysis consisting of an 
all- by- all blastn analysis, followed by a Markov cluster algorithm 
(MCL) (Dongen, 2000). Here, a cluster refers to a set of sequences 
that are potentially homologous (usually corresponding to a gene 
region). For blastn analyses, we considered successful hits to over-
lap at least by 65%, have an e- value of at least 10-10, and to have 
identity of at least 20%. For MCL analyses, we used the options 
“–abc- neg- log10 - te 12 - tf ‘gq(50)’ - I 2.1”. Once constructed, the 
clusters were placed in a folder within the clade folder (e.g., 23 clus-
ters were placed in a folder called “clusters” within the folder for 
Sanicula). Alignments using MAFFT v.7.305b were constructed for 
each of these clusters (Katoh and Standley, 2013). These analyses 
were repeated for each tipward clade.

To construct clusters for each of the rootward clades (e.g., the 
parent of Sanicula, Saniuleae), we proceeded in a postorder fashion 
(i.e., from tips to root). At each rootward clade, we would conduct 
the following analysis. If there was one subtending clade, the clusters 
of the child folder would be placed in the parent folder. If there was 
more than one subtending clade, the clusters from the first subtend-
ing clade, chosen arbitrarily, were placed in the parent folder. For 
each additional subtending clade, we conducted a blastn analysis of 
the subtending clade clusters and the parent clusters, which could 
result in multiple clusters hitting each other (e.g., if a cluster was split 

FIGURE 1. Workflow for analyses in constructing the trees. For each clade listed in Appendix S1, here Apiales, we clustered sequences starting at 
the most tipward clade (Sanicula highlighted here), and merged clusters as we moved rootward Apiales. We used the clusters at the most rootward 
clade (Apiales in this example) to construct a supermatrix where we chose clusters that had good representation for the rootward clade or good rep-
resentation for a subtending clade (as shown by the gene region on the far right). Using this supermatrix, we constructed a phylogeny and estimated 
divergence times. We then placed this constructed phylogeny into the backbone (either Open Tree of Life or Magallón et al. [2015]) as- is or with the 
unsampled taxa from the OT- taxonomy placed back.
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in a subtending clade because of poor overlap but was more com-
plete in another set of sequences). We therefore constructed graphs 
where nodes represented clusters and, if there was a successful hit 
between sequences in different clusters, an edge connecting those 
nodes was placed. For each connected component that consisted of 
more than one cluster, we merged the sequences and created a new 
cluster in the parent clade. This procedure is similar to the algorithm 
used to construct initial clusters, cliques, by PhyLoTA (Sanderson 
et al. 2008) but applied between clusters. We then conducted a pro-
file alignment, merging the subtending and parent clusters using 
MAFFT v.7.305b (Katoh and Standley, 2013). This process was re-
peated until the root of the major clade was reached (e.g., Apiales).

Once clusters were constructed, we built a supermatrix data set 
for each major clade listed in Appendix S1. If the clade had more 
than 100 taxa, we included clusters that contained at least 20% of 
the taxa included in the NCBI taxonomy. If the clade had fewer than 
100 taxa, we included the cluster if it contained at least 70% of the 
taxa included in the NCBI taxonomy. This difference in percentages 
was intended to compensate for those gene regions sampled for tip-
ward clades that have species level sampling (and so would be ex-
pected to have a high percentage of species included). Although this 
initial procedure was automated, we manually examined whether 
major gene regions (e.g., those sampled by the angiosperm tree of 
life project [Soltis et al., 2011]) were present in the set of clusters but 
missed in the supermatrix construction given the filters above. In 
these cases, the missed gene regions were added.

For each supermatrix, we constructed phylogenetic trees using 
RAxML v. 8.2.11 (Stamatakis, 2014) using the GTR+Γ molecular 
model partitioned by gene region. For the first analysis, we con-
strained all clades, as recognized by NCBI, to be monophyletic. 
Many of the rootward nodes in the angiosperm phylogeny require 
genomic or transcriptomic data to be resolved, data that are not 
included in these species- centric analyses. After conducting this 
constrained analysis, we tested constraints by calculating a quartet 
proportion measure (Pease et al., 2018, in this issue) and collapsing 
the node if less than 30% of the quartets supported the clade. We 
then reran RAxML using the previous ML result as a constraint with 
the taxa from unsupported clades removed in order that they may 
be estimated without the constraint. Generally, we assumed that the 
taxonomy was correct unless demonstrated otherwise. After trees 
were constructed, we manually inspected the phylogenies and re-
moved outlying taxa assumed to be misidentified (based on branch 
length or position). Rooting was performed based on information 
available on the most recent systematic studies (typically as refer-
enced in the Angiosperm Phylogeny Website version 12–13 http://
www.mobot.org/MOBOT/research/APweb/).

Calculating support and data overlap

Because we may have a series of constraints applied to each branch, 
we could not conduct traditional bootstrap analyses as implemented 
in RAxML. To ascertain the confidence in edges, we instead employed 
the quartet approaches described in this volume (Pease et al., 2018, 
in this issue). Briefly, these analyses consisted of using the alignment 
and the maximum likelihood tree to, on each edge, draw a random 
number of quartets of sequences that represent the quartets defined 
by the edge in the ML tree. Then the likelihoods for that edge and the 
two alternative resolutions were calculated, and the resolution that 
has the highest likelihood was recorded. This procedure was done 
200 times for each edge in each subtree. We then summarized them 

with the Quartet Concordance (QC) measure, which calculates the 
ICA (Salichos et al., 2014) based on the distribution of quartets that 
support or conflict with the resolution found in the focal tree.

Data overlap was measured for each of the major clades and vis-
ualized on each tree. In this case, data overlap was defined as the 
number of sites that had overlapping data between sister clades. To 
calculate overlap, we proceeded through the phylogeny in a pos-
torder fashion and calculated the total number of sites that con-
tained at least 1 bp of overlap between each subtending sister clade. 
We calculated this as a site- wise measure because each gene region 
may contain sequences with poor overlap.

Divergence- time estimation

As with the phylogenetic construction, we also conducted a hier-
archical analysis for divergence- time estimation. We conducted 
divergence- time analysis using the penalized likelihood approach 
as implemented in treePL (Sanderson, 2002; Smith and O’Meara, 
2012). To apply constraints, we examined overlap between the 
Magallón et  al. (2015) dated tree and each individual clade tree. 
For every clade in the individual trees that was monophyletic in the 
Magallón et al. (2015) tree, we applied a constraint with a fixed age 
of the node height, resulting in 590 constraints. We then conducted 
treePL analyses with a relatively high rate smoothing penalty value 
(logp = 10), given the size of the phylogenies.

Large tree construction

We constructed four large phylogenies: GenBank taxa with a back-
bone provided by Open Tree of Life version 9.1 (GBOTB), GenBank 
taxa with a backbone provided by Magallón et al. (2015) (GBMB), 
GenBank and Open Tree of Life taxa with a backbone provided 
by Open Tree of Life version 9.1 (ALLOTB), and GenBank and 
Open Tree of Life taxa with a backbone provided by Magallón et al. 
(2015) (ALLMB). To examine detailed differences between the two 
backbones, please consult the Open Tree of Life website (https://
tree.opentreeoflife.org); the differences are too great to detail here. 
Primarily, the Magallón et al. (2015) and Open Tree of Life back-
bones were similar but with the Open Tree of Life backbone provid-
ing more resolution toward the tips, that can be useful when there 
are no molecular data. For GBOTB and GBMB, we replaced each 
major clade with the phylogeny constructed, as described above. 
For ALLOTB and ALLMB, we replaced the clade representing each 
major clade (constructed as described above) with the constructed 
clade and then added taxa that were not sampled in the phylogeny 
but found in the original Open Tree of Life tree with the resolution 
retained. Many of the taxa added back will be unresolved. The taxo-
nomic names found in the final tree consist of those found primar-
ily in both the Open Tree of Life and NCBI taxonomies.

We aim to continue to improve the phylogenies constructed 
here. To that end, we provide updated versions of this tree at https://
github.com/FePhyFoFum/big_seed_plant_trees with correspond-
ing alignments and individual clade trees linked within. We also 
hope to have issues discussed and noted in the issue tracking system 
on this website in order to continue improving the resources.

Diversification analyses

We conducted diversification rate- shift analyses using MEDUSA 
(vers. 0.951 [Harmon et al., 2008; Pennell et al., 2014]) on the GBOTB 
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phylogeny. We chose MEDUSA, primarily, because the size and scope 
of the phylogenies prevented convergence of Bayesian methods in a 
timely manner. MEDUSA adds piecewise clade- specific diversifica-
tion models to a time- calibrated tree in a manner that best explains 
(using AIC) the configuration of the tree. Because birth–death mod-
els generally require phylogenies to be fully bifurcating and to have 
non- zero branch lengths, we randomly resolved any polytomies and 
set minimum branch lengths to 0.1. We arrived at this number after 
exploring a range of smaller and larger minimum values because this 
value was the smallest minimum that did not increase spurious rate 
shifts. Because larger trees can suffer from statistically spurious rate 
shifts simply from the combinatorics involved, piecewise models were 
only added if they improved the AIC score by more than a threshold of 
15.97 units (correction calculated by MEDUSA for a tree with 79,882 
tips; see Pennell et al. [2014]). The analysis was terminated when no 
subsequent piecewise model improved the AIC beyond the threshold.

RESULTS AND DISCUSSION

Sampling in the large phylogenies

There were 119,355 species, 13,328 genera, and 2477 higher taxa 
of seed plants recognized by GenBank as of release 218. Of these, 
79,689 species had data that were sufficiently overlapping, based on 
the methods discussed here, to include in the analyses presented 
here. Of these, 812 were not present in the OT- taxonomy, most 
probably due to mismatch in the version of NCBI used for tax-
onomy merging in OT- taxonomy and that used for our GenBank 
analyses. The GBOTB contained 79,881 taxa (Figs. 2–4) and GBMB 
contained 79,874 (Appendix S2). ALLOTB (Fig.  5) contained 
353,185 taxa and ALLMB contained 356,305 taxa (Appendix S3). 
The discrepancy in the number of taxa was a result of clades being 
lost to conflict between the trees constructed of major clades and 
the Open Tree of Life and Magallón et al. (2015) trees. The higher 
number of taxa in ALLMB was the result of fewer input trees in 
the synthetic analysis used to create the backbone tree with OT- 
taxonomy and therefore, fewer potential conflicts. For example, the 
Open Tree of Life (version 9.1) lacked a monophyletic Sapindales, 
and so those taxa are removed from the Open Tree of Life back-
bone. We then added a monophyletic Sapindales to the backbone 
based on data from GenBank but were unable to add any unplaced 
taxa back. Because the Sapindales are monophyletic in the Magallón 
et al. (2015) backbone, those unsampled taxa could be placed back. 
The fewer input trees for Magallón et al. (2015) results in fewer con-
flicts, more monophyly, and therefore, more taxa that were unsam-
pled by GenBank being represented in the final tree. The trade- off, 
however, was less resolution for those unsampled taxa than would 
be found in the ALLOTB.

Some of the conflict found in the Open Tree of Life synthesis 
tree had to be removed to successfully place the major clades. The 
Sapindales, discussed above, is an example of this problem, which 
is just one of several challenges that highlight the need for human 
intervention in these large analyses, also discussed by Beaulieu and 
O’Meara (2018) in this issue. Human intervention was also nec-
essary in removing obvious outliers (based on branch lengths or 
taxonomic placement) and identifying gene regions for data set 
construction. Until data quality issues decrease and/or data availa-
bility increases dramatically, human intervention seems to be a nec-
essary element to construct high- quality large data sets.

Data overlap, as measured by the overlap in sites between sub-
tending nodes is presented on the GBOTB (Fig.  3). This analysis 
provided an edgewise view of the distribution of data while ac-
commodating for the fact that even if the same gene was sampled 
between taxa, the sites may not overlap significantly. The distribu-
tion across edges (Fig.  3B) roughly approximated an exponential 
distribution with a minimum overlap of 0 bp, maximum overlap 
of 29,229 bp, mean of 2340 bp, and median of 1792 bp. The 0- bp 
overlap may reflect either a constraint that has no overlapping data 
(one reason to use a constraint) or a resolution with no supporting 
data (perhaps a random resolution between equal alternatives). A 
median value of 1792 bp suggests that many of the edges had some 
overlap in data, roughly corresponding to one or two gene regions. 
This result is not unexpected considering previously analyzed data 
sets of this magnitude that found similar results (Sanderson, 2008; 
Hinchliff and Smith, 2014). Both the relatively low overlap between 
sequences and the lack of data in GenBank for roughly 200,000 taxa 
highlight the need for additional sequencing of molecular data to 
resolve more confidently most of the phylogeny of seed plants. For, 
despite the size of the data set presented here, there is still little over-
lap between species, and there are still unsampled taxa. In the analy-
ses presented here, we largely excluded smaller gene regions because 
of misidentification problems (see discussion below). If we were to 
include those smaller gene regions (e.g., ITS), we would expect the 
median number of sites overlapping at each edge to decrease.

Support was measured as Quartet Concordance (Pease et  al., 
2018, in this issue) and plotted on the GBOTB (Fig. 4). The distri-
bution of support (Fig. 4B) is relatively flat with spikes at - 1, 0, and 
1 and with a median of 0.29 and mean of 0.285. The spikes at - 1, 0, 
and 1 reflect significant values for the QC measure: - 1 reflects com-
plete support for an alternative, 0 reflects no support for any reso-
lution, and 1 reflects complete support for the resolution in the ML 
tree presented. This analysis, along with the data overlap, highlights 
the relative low support throughout the tree because the median 
support value was only slightly higher than “no support”. This find-
ing may be the result of poor data overlap, underlying conflict due 
to incomplete lineage sorting or other processes, or true biological 
uncertainty (e.g., saturation, lack of informative substitutions, etc.). 
Nevertheless, more detailed analyses and additional data would 
likely shed more light on the details of uncertainty at specific nodes.

Diversification results

The primary goal of this study was to explore a way of constructing 
dated phylogenies using molecular data along with resources availa-
ble through the Open Tree of Life project. However, to demonstrate 
one way to use the resulting phylogenies, we conducted diversifica-
tion analyses. Our diversification analyses found 472 distinct diver-
sification models (471 rate shifts) that best describe the seed plant 
phylogeny. While every clade experienced some change in the rate 
of diversification, the most extensive, in terms of number and rate, 
were found in the Asterales (Fig.  2). Ranunculales, Gentianales, 
and Caryophyllales all also experienced multiple large shifts. 
Furthermore, many of the shifts were nested within other diversifi-
cation shifts. The observation of nested diversification and lag times 
between major clades and diversification shifts have been noted by 
other authors (Donoghue, 2005; Smith et al., 2011; Donoghue and 
Sanderson, 2015; Tank et al. 2015). A notable pattern highlighted by 
the results here is that although shifts were associated with the ori-
gin of angiosperms and mesangiosperms, few large shifts occurred 
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at the rootward internal nodes of the tree. However, we do not wish 
to over- interpret this result considering the uncertainty associated 
with large phylogenetic trees, discussed below. This demonstration 
serves as an example of the potential utility of these trees.

There were challenges in using this phylogenetic tree for diver-
sification analyses that are worth examining. For example, diver-
sification analyses were sensitive to the minimum branch lengths 
chosen. The penalized likelihood dating procedures can result in 
zero or near- zero branch lengths where there is conflict or little 
information from the molecular data (i.e., zero or near- zero mo-
lecular branch lengths in the chronogram). Usually, branches with 
very small lengths will be collapsed. However, MEDUSA analyses 
require bifurcating trees with non- zero branch lengths at each edge. 
We set the minimum divergence time branch lengths to be 0.1 but 

found that different values resulted in different diversification in-
ferences. Often, the result of smaller minimums was an increase in 
the estimated diversification shifts around the zero branch length 
edges. As a result, and to be conservative regarding our estimates, 
we favored the large minimum branch length value. Nevertheless, 
we regard these results as coarse approximations that may be re-
fined in the future with more nuanced divergence- time estimation 
results and integration over the uncertainty in the phylogenetic es-
timation of topology and branch lengths.

In addition to branch length considerations, there are persistent 
concerns regarding taxon sampling and diversification analyses. 
Here, we used the phylogeny without the additional taxa from the 
Open Tree of Life because the lack of resolution in those additional 
taxa would require some form of either random or birth–death 

FIGURE 2. (A) GBOTB tree with colors corresponding to binned rates of diversification (see text for details on analyses). Rates were binned to make 
for easier visualization of rates. Red dots denote nodes with a shift in diversification rate and the size of the dot corresponds to the magnitude of the 
shift. (B) Lineage through time plot of the GBOTB tree. Divergence times are denoted with concentric circles.
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resolution (Kuhn et al., 2011). While the placement of taxa based on 
birth–death models may be useful, the large number of unplaced taxa 
in the ALLOTB tree led us to use the smaller GBOTB tree. Ideally, 
the placement of these taxa should be informed by molecular data 
(Rabosky, 2015). In addition to these issues, incomplete or biased 
taxon sampling will also influence the results. This problem, how-
ever, is not specific to large trees as it impacts all diversification stud-
ies, and very few clades of large size have been sampled completely.

The diversification analyses presented here demonstrate one way 
these phylogenies may be used. We highlight the potential pitfalls 
and caveats with these data; however, most of these apply to smaller 
data sets as well. In the case of large or small data sets, uncertainties 
and assumptions—i.e., unsupported relationships, incomplete sam-
pling, and/or taxonomic misidentification—need to be understood 
when interpreting the results of diversification and other evolution-
ary comparative analyses.

Comparison to other techniques

Over the last few years, there have been several methods devel-
oped for utilizing the publicly available data stored in GenBank. 
The method presented here is similar in some ways but differs in 
other important ways. We do not present an exhaustive compar-
ison but instead provide a brief discussion of a few alternatives. 
PyPHLAWD differs from PHLAWD in that PyPHLAWD is more 
flexible. PyPHLAWD, unlike PHLAWD, was developed as a series 
of different scripts, any one of which can be modified. PyPHLAWD 
also does not require the user to provide sequences a priori because 
clustering is part of the analysis. PyPHLAWD differs from Phylota 
(Sanderson et al., 2008) in that PyPHLAWD only conducts a ma-
jor clustering analysis tipward, with BLAST being used to combine 
clusters deeper in the tree. This procedure allows for large clus-
ters to be constructed as BLAST can be a limiting factor given that 
computational requirements increase dramatically as the number 

FIGURE 3. Data overlap presented on the GBOTB tree (A) and (B) as a histogram summarizing across all data. Values on the tree are displayed as log10- 
transformed to allow for easier visual discrimination.
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of taxa increases. As a result, Phylota does not report larger clusters 
toward the root of the tree of life. SUPERSMART takes a list of 
taxa or clade names and constructs dated phylogenies (Antonelli 
et al., 2017). SUPERSMART is, perhaps, the most similar to that 
which we present here with some exceptions. First, we did not 
construct a backbone as part of the analysis presented here and 
instead used an existing backbone (from the Open Tree of Life). 
Many of the major lineages have required genomic or transcrip-
tomic data to resolve major clades (e.g., Wickett et al., 2014), and 
analyses of those data types often require different methods than 
those conducted in any of the aforementioned packages (e.g., Yang 
and Smith, 2014). Future developments could incorporate meth-
ods typically used for genomic data into PyPHLAWD to facilitate 
the construction of deeper edges in the tree of life. Another differ-
ence between PyPHLAWD and SUPERSMART is that we do not 
conduct Bayesian analyses for divergence times or phylogenetic 
reconstruction because of the size of the data presented precludes 

that possibility. This approach could be implemented within 
PyPHLAWD but is not currently. The clustering analyses, merging, 
and other aspects of the sequence analyses also differ. However, 
similarities between the methods suggest that both could produce 
similar results, with slight differences in the means of calculating 
similarity likely to inject some variation. This comparison should 
be explored further as both packages continue to develop. Finally, 
we integrated the information from the Open Tree of Life back into 
the phylogenies. Integration with the Open Tree of Life is not a 
goal of SUPERSMART, and so unsurprisingly that is not part of 
the analysis.

There are now a variety of programs that can process data from 
public databases to produce clusters, alignments, and trees with 
and without divergence times. We do not suggest that PyPHLAWD 
is the single, best solution for constructing molecular phyloge-
nies using GenBank. Instead, we feel as though PyPHLAWD is 
another option among a set of good alternatives and hope that 

FIGURE 4. Support as measured by Quartet Concordance scores presented on the GBOTB tree (A) and (B) as a histogram summarizing across all data.
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the flexibility of the software will allow for continued updating 
and extension. As new sequences are added to GenBank and 
other resources, and as the Open Tree of Life continues to be 
updated, the alignments and trees generated here can be refined. 
Furthermore, we present these phylogenies through a framework 
(https://github.com/FePhyFoFum/big_seed_plant_trees) that 
allows for reporting and tracking of issues and improvements 
like that used for software development. We are hopeful that this 
framework will facilitate the enhancement of these resources be-
cause the community can communicate any problems directly. 
The flexibility of automated but not fully automated procedures 
also facilitates the ability to intervene, for example, to remove 
outliers, adjust gene sets, and monitor overall quality. The need 
for human intervention has also been highlighted by Beaulieu 
and O’Meara (2018, in this issue). Additionally, we hope that the 
connection to the Open Tree of Life will enhance those resources 
and those comparative analyses that benefit from more complete 
sampling.

Limitations of these data sets and analyses

The data sets and phylogenetic trees presented here, while they have 
many benefits, are not without limitations. Challenges are associ-
ated with all large phylogenetic data sets that must be considered 
and that relate to uncertainty and lack of information discussed 
above and by others (Hinchliff and Smith, 2014; Edwards et  al., 
2015). There are also issues specific to the data set and analyses 
presented here. One fundamental limitation specific to this data set 
is that many taxa in both the ALLOTB and ALLMB do not have 
molecular data associated and are placed based on taxonomy. Most 
species of seed plants have no molecular data currently in GenBank, 
and those that do may not have significant overlap with other se-
quences. While many sequencing projects focus on collecting more 
gene regions, there is still a great need for more species that have 
no data to be collected and sequenced. In the meantime, research-
ers may choose to conduct Bayesian analyses using a birth–death 
before randomly resolving polytomies (Kuhn et al., 2011), though 

FIGURE 5. The ALLOTB tree with some major clades labeled and 353,185 tips. Divergence times are denoted with concentric circles.
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ideally the placement of all taxa should be informed by molecular 
data (Rabosky, 2015).

In addition to the fact that most species only have taxonomic 
data, there is also significant uncertainty in the placement of many 
taxa that do have molecular data. Here, we measure uncertainty us-
ing the Quartet Concordance (QC) measure (Pease et al. 2018, in 
this issue). While this measure allowed us to record how often the 
concordant quartet was inferred over the two alternative quartets, 
the method does not generate alternative resolutions. The individ-
ual data sets are available such that users could generate a set of trees 
from any other set of analyses (e.g., Bayesian analyses, bootstrap 
analyses). Nevertheless, the QC and data overlap analyses presented 
here demonstrate that uncertainty is still a concern in these large 
phylogenies. While data sets with a large number of taxa may pres-
ent specific problems, recent transcriptomic and genomic analyses 
have shown that increasing the number of genes will also expose 
the underlying complexity of conflict inherent to genomic evolu-
tion (Salichos et al., 2014; Smith et al., 2015; Brown and Thomson, 
2016; Shen et al., 2017). Finding better ways of incorporating this 
uncertainty in these large trees instead of hoping to resolve it, or re-
lying on a single resolution, may prove more beneficial as we move 
forward. Finally, while some comparative analyses may be robust 
to alternative placements of taxa, uncertainty should be considered 
by both researchers making use of these data sets and researchers 
developing comparative methods.

Divergence time estimation is also a major challenge for any phy-
logenetic study, and the challenge only increases with data set size. 
Large data sets present a computational burden where constrained 
optimization algorithms become stuck in local optima, a problem 
that is exacerbated as data set size grows and heterogeneity in-
creases (Smith and O’Meara, 2012). Many of the data sets analyzed 
in this study are some of the largest analyzed and so likely suffer 
from this problem. In addition to this problem inherent to opti-
mization, there are well- known problems of rate heterogeneity that 
can significantly increase estimation error (Smith and Donoghue, 
2008; Beaulieu et al., 2015). For those researchers that wish to in-
corporate uncertainty, data sets are made available, but how best to 
generate a set of trees using penalized likelihood that represent a 
credible interval and how best to accommodate the extensive rate 
heterogeneity should both be explored further.

Finally, these analyses demonstrate a means for combining mo-
lecular data with the Open Tree of Life into a “comprehensive” phy-
logeny. However, these trees are comprehensive only in that they 
include the sampled and unsampled taxa represented in the tax-
onomies of the Open Tree of Life. Many clades may still require 
significant taxonomic work and smaller, species- level, examination 
before there can be confidence about species composition. So, while 
these phylogenies contain all the taxa from the Open Tree of Life, 
revisions based on smaller scale studies will continue to improve 
these data and analyses.

A remark on short sequences

We excluded most small gene regions from the data set construction 
in these analyses, especially in more complex and speciose clades. 
In some cases, this means that gene regions that have been sam-
pled for many taxa were excluded. Primarily, the removal was done 
to avoid the inclusion of misidentified and problematic sequences, 
many of which were collected as part of barcoding projects. DNA 
barcoding aims to collect a small number of specific gene regions for 

many species to help with identification and to address other spe-
cific questions. These efforts, though each may have different goals, 
result in the submission of many sequences to GenBank that other 
researchers can download and use in, among other things, phyloge-
netic analyses. One major goal for biologists is to increase the com-
pleteness of phylogenetic trees. Barcode data, which can increase 
sampling in undersampled geographic regions, would be a desirable 
resource if they could be incorporated into phylogenetic analyses.

Despite these benefits, our analyses have found many of these se-
quences to be a hindrance, resulting in our attempt to exclude most 
short sequences. While most short sequences may not suffer from 
any of following problems, we found that many suffered from sev-
eral issues that hindered accurate reconstruction. First, many short 
sequences contained little to no phylogenetic information (e.g., few 
informative sites), which may be the result of the small size of the 
gene regions used, slow molecular evolution of the gene, or slow 
molecular evolution of the lineage. When lineages have little to no 
phylogenetic information, single maximum likelihood analyses can 
be misleading as there are many nearly equally probable placements 
of a specific taxon. Bayesian methods and likelihood methods that 
integrate over topological uncertainty can correctly report the un-
certainty in the placement of uninformative sequences. However, 
Bayesian methods are intractable for data sets of the sizes presented 
here. There are ways to better incorporate phylogenetic uncertainty 
in maximum likelihood analyses, but the computational burden 
for these large data sets is quite high. Furthermore, while sequence 
similarity can be useful for taxonomic identification, having taxa 
integrate across the familial or ordinal level because of lack of phy-
logenetic information is not particularly useful for phylogenetic 
analyses. So, while we may be able to accommodate for the un-
certainty in the placement of these taxa, it is unclear whether the 
increase in complexity and runtime is worth the inclusion of such 
sequences. Of course, not all barcode or small sequences have this 
problem, but the ability to identify which do have the problem will 
improve these large phylogenetic efforts enormously.

The second major problem that we found, misidentification, is 
more difficult to address and, without correction, negates our ability 
to accurately estimate phylogenies. In our analyses, we found that 
many of the sequences that violated the constraints were misiden-
tified. For example, in an analysis of the available data for Laurales, 
we found several sequences such as Litsea collina and Alseodaphne 
andersonii that are more probably Endiandria, Beilschmiedia, 
Cryptocarya, or Neolitsea (Appendix S4). While these genera may 
not in fact be monophyletic, the samples seem to fall far from their 
labeled taxonomic placement. Either taxonomic revision may be 
necessary or these sequences were misidentified. Even when there 
are multiple loci that represent a taxon, if one sequence is egregiously 
misidentified, that sequence can drive the incorrect placement of 
the taxon. The problem of misidentification was so egregious that 
we filtered out most short sequences to eliminate misidentification 
when possible. There may also be problems with misidentification 
of larger sequences, but our analyses found that the exclusion of 
most short sequences dramatically reduced this difficulty. While 
methods for correctly identifying sequences in GenBank are be-
yond the scope of this paper, the use of constraint trees aided in our 
ability to isolate misidentified sequences, and future research will 
expand these efforts.

Both problems highlight the need to address how we should pro-
ceed with short and misidentified sequences for large phylogenetic 
analyses. There are thousands of useful sequences that do not suffer 
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from these issues that we have excluded. However, when conducting 
large analyses, small percentages of bad data can dramatically inhibit 
accurate phylogenetic estimates. With additional developments, we 
hope that bad sequences may be filtered so that the many good short 
sequences can be included. We have included with PyPHLAWD 
lists of sequences or taxa that may be problematic to better incor-
porate shorter sequences. We have also begun documenting prob-
lematic sequences in a more general resource that all software and 
researchers can utilize (https://github.com/FePhyFoFum/seq_fil-
ters). Uncertainty can be accommodated, but perhaps for short 
sequences, more constrained searches as implemented in software 
packages meant for barcode identification would be more appropri-
ate (Matsen et al., 2010; Berger et al., 2011). Misidentification may 
be more difficult to handle, but resources that allow for the identi-
fication and correction of these sequences that could be utilized by 
the multitude of software packages would be preferable.

Constraints and large phylogenies

One of the fundsamental challenges to constructing phylogenies 
are edges deep in the tree, a problem exacerbated by complex pat-
terns of conflict and lack of information (e.g., Salichos et al., 2014; 
Smith et al., 2015; Brown and Thomson, 2016; Shen et al., 2017). 
The computational challenge of constructing phylogenetic trees 
scales exponentially with the addition of taxa, and so reconstruct-
ing deeper and deeper edges increases the computational burden 
and complexity significantly. This challenge leads to the question 
of whether we need to always reconstruct these deeper edges when 
constructing large phylogenies. In other words, can we build on 
the knowledge that we have accrued from other analyses? Previous 
studies may have successfully analyzed rootward nodes that iden-
tify major clades using genomic and/or transcriptomic data with 
sophisticated analyses that can incorporate more complex evo-
lutionary models (Wickett et  al., 2014; Yang et  al., 2015; Givnish 
et al., 2015; McKain et al., 2016; Comer et al., 2016; Walker et al., 
2017). Data sets with large numbers of taxa may not be able to take 
advantage of these large and complex data sets or the more com-
plex evolutionary models simply due to the scale of the data set. 
More importantly, the large phylogenetic data sets examined here, 
consisting of thousands of species, are generally not adequate for 
reconstructing or testing hypotheses regarding deep and complex 
evolutionary relationships due to poor data overlap and computa-
tional complexity. The approach we take here is to leave the resolu-
tion of the deeper edges of the tree to other analyses (summarized 
in the Open Tree of Life) and instead focus our analyses on the finer 
details nested within each major clade. For example, we assume 
that the gymnosperms form a monophyletic group that is sister to 
the angiosperms. This assumption, while still discussed (Donoghue 
and Doyle, 2000), is not controversial and removing the assumption 
would not only increase the runtime significantly, but the data we 
use to reconstruct the tips may not be the optimal data to recon-
struct the deeper edges. By making less controversial assumptions, 
we not only reduce runtime but focus our reconstruction efforts to 
more uncertain parts of the tree.

One limitation of the analyses presented here, however, is that we 
relied on a single resolution for these constraints. Recent genomic 
and transcriptomic analyses have highlighted extensive conflict 
across the tree of life and uncertainty associated with more than 
simply lack of phylogenetic information (Salichos et al., 2014; Smith 
et al., 2015; Brown and Thomson, 2016; Shen et al., 2017; Walker 

et  al. 2017). Future work should explore means of incorporating 
the uncertainty found in these more extensive genomic data sets 
into the constraints used by larger phylogenies to better reflect our 
knowledge of the complexity within these parts of the tree of life. 
There may not be one resolution for a part of the tree of seed plants, 
and we should look to incorporating that into our analyses of these 
large data sets.

In addition to the deeper edges in the tree, we extended this 
approach by constructing phylogenies with taxonomy- based con-
straints throughout, removing them when they were unsupported. 
This approach may be controversial given the knowledge and 
quality of underlying taxonomy and phylogeny. For example, for 
Fungi, due to complex taxonomic resources and data availability, 
applying more tipward constraints may be harder than for plants 
and mammals. Furthermore, there may be genera with questiona-
ble monophyly. However, as with the deeper nodes, we argue that 
these large phylogenies consisting of thousands of taxa are not ideal 
data sets with which to test these hypotheses. Instead, focused stud-
ies aimed at phylogenetic reconstruction of a particular group are 
the best place for taxonomic revision. These can then be incorpo-
rated into the large phylogenetic analyses where data set coverage 
and taxonomic sampling may not be adequate to test those taxo-
nomic hypotheses. Nevertheless, as with the deeper nodes, these 
large analyses should be designed to accommodate the inherent 
conflict underlying the tree of life where possible. In addition to 
the computational benefits, as mentioned above, constraints can 
also be helpful when attempting to identify misidentified taxa and 
clades that have relatively little molecular information required for 
successfully resolving the clade. We suggest further work should be 
done to examine whether this approach would be helpful, generally, 
in reducing runtimes, in identifying misidentified taxa, and where 
researchers have reduced the resolution of major clades to a small 
number of well- known alternative resolutions.

Where do we go from here?

Here we present a set of large phylogenies for seed plants. We do 
not intend this result to be the definitive view of seed plant evolu-
tion. Instead, we hope that these efforts underscore the challenges 
of these projects.  The exercise has highlighted issues concerning 
uncertainty, data overlap, and data availability that suggest the need 
to continue to improve methods and generate new data. This exer-
cise has also underscored the need for human intervention in the 
process that has been highlighted by others (Hinchliff and Smith, 
2014), including most recently by authors in this issue (Beaulieu 
and O’Meara, 2018). While many of the analyses can be automated, 
because of the complexity of the data, problems with misidenti-
fication, and other data quality issues, no steps can or should be 
fully automated. Nevertheless, we need places from which to start 
to measure progress and build toward the goal of an accurate and 
resolved seed plant phylogeny. Despite the challenges, the trees pre-
sented here will hopefully serve as resources that will continue to be 
updated as new data become available and as the Open Tree of Life 
resources are updated.
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