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Impact of RNA-seq attributes on false positive
rates in differential expression analysis of de novo
assembled transcriptomes
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Abstract

Background: High-throughput RNA sequencing studies are becoming increasingly popular and differential
expression studies represent an important downstream analysis that often follow de novo transcriptome assembly.
If a lot of attention has been given to bioinformatics tools for differential gene expression, little has yet been given
to the impact of the sequence data itself used in pipelines.

Results: We tested how using different types of reads from the ones used to assemble a de novo transcriptome
(both differing in length and pairing attributes) could potentially affect differential expression (DE) results. To investigate
this, we created artificial datasets out of long paired-end RNA-seq datasets initially used to build the assembly. All
datasets were compared via DE analyses and because all samples come from the same sequencing run, DE of genes or
isoforms can be interpreted as false positives resulting from sequence attributes. If the false positive rate for differential
gene expression does not seem to be strongly affected by sequencing strategy (max. of 3.5%), it could reach 12.2% or
28.1% for differential isoform expression depending of the pipeline used. The effect of paired-end vs. single-end strategy
was found to have a much greater impact in terms of false positives than sequence length.

Conclusion: In light of false positive rate results, we recommend using paired-end over single-end sequences in
differential expression studies, even if the impact is less serious for differential gene expression.

Keywords: de novo transcriptome assembly, Differential gene expression, Differential isoform expression, Non-model
organisms, False positive rates, RNA-seq

Background
Recent advances in massively parallel sequencing tech-
nologies have created huge opportunities in the field of
transcriptomics [1-4]. High-throughput RNA sequencing,
or RNA-seq, together with the development of powerful
computational methods, have given researchers the oppor-
tunity to study non-model organisms by assembling de
novo transcriptomes, i.e. without a reference genome or
transcriptome [5-7]. Such computational methods are be-
ing increasingly used as species for which a referenced
genome or transcriptome exists represent a tiny fraction
of all species.
Beyond transcriptome assembly, one of the great advan-

tages of RNA-seq is to allow gene or isoform expression

quantification and the evaluation of their differential ex-
pression under different conditions. By providing direct
quantification of all transcripts of a sample, RNA-seq data
has the potential to overcome several limitations of previ-
ous approaches that were limited to small scaled studies
(quantitative PCR) or that required important genomic
knowledge and resources (microarrays) [8]. For instance,
RNA-seq data has been rapidly found to outperform mi-
croarrays approaches [9].
Despite these great promises, accurate and reliable dif-

ferential expression studies are still challenging and a lot
of attention has been given to bioinformatics tools [10,11].
These challenges involve, for example, mapping sequen-
cing reads to a reference transcriptome and statistically
testing for differential expression. Yet, surprisingly little at-
tention has been given to the impact of sequence types
used as input on differential expression analyses. Practic-
ally, differential expression studies requires two decisions
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in terms of sequencing parameters, i.e. RNA-seq reads
length and the possibility of sequencing RNA fragments
from one end (single-end reads) or both ends (paired-end
reads). Of course, long paired-end reads are the best choice
for constructing an assembly as they outperform single-
end alignment in terms of both sensitivity and specificity
[12]. However, single-end reads might be favored for eco-
nomic reasons, especially for gene quantification as an in-
crease in sensitivity and specificity might not always be
required. For instance, although paired-end reads are gen-
erally thought to be imperative for correctly estimating
isoform-specific expression, they might not be required for
gene expression. As such, it could seem appropriate to as-
semble a transcriptome using paired-end reads, but to use
single-end reads when quantifying gene expression on bio-
logical replicates. This common belief has rarely been
tested and little is known about the impact of sequencing
decisions on differential expression results accuracy.
The objective of this study is to test how sequencing

strategies (i.e. sequencing length and pairing options) af-
fects false positive rates in differential expression results
at both gene and isoform level. We created different types
of sequence datasets from a long paired-end sequencing
run and analyzed the datasets with each other to evaluate
the impact of the sequence type on false positive rates. Our
results show that the choice of sequence used in differential
gene expression studies can sometimes have an important
impact on the accuracy of the results.

Results and discussion
Transcriptome assembly
Two samples consisting of different tissues from distant
plants were studied: RNA was extracted from willow
(Salix purpurea L.; Salicaceae; Rosids) buds, as well as
from all stages of flower development of Rhytidophyllum
vernicosum Urb. & Ekman (Gesneriaceae; Asterids) using
a modified CTAB method [13]. Both samples were se-
quenced using 100 bp paired-end strategy on an Illu-
mina Hiseq 2000 sequencer at the Genome Quebec
Innovation Centre (Montreal, Canada). After removing
poor quality sequences and nucleotides, a de novo tran-
scriptome was built with Trinity [4]. To evaluate whether
different types of sequences used in the transcriptome as-
sembly could affect false positive rates in DE analyses, we
assembled two transcriptomes, that is with and without
pairing information (Table 1).

Bioinformatics pipelines
Starting from the transcriptome assemblies, two differ-
ent pipelines were used to calculate contig abundances
and differential expressions (Figure 1). The first one is
directly available from within the Trinity suite and is
composed of the ungapped aligner Bowtie [14], RSEM
[15] for calculating transcript abundances, and EdgeR

[16] for testing differential expression. Trinity being widely
used, we thought it was relevant to test this pipeline that
might represent the default option in many studies. The
second pipeline used Bowtie2 [17], eXpress [18] for esti-
mating transcripts abundances, and EBSeq [19] for differ-
ential expression. This pipeline is based on a gapped
aligner known to perform well [20] and recommended
for use with eXpress [18]. One advantage of this second
pipeline is speed: bowtie2 + eXpress is very fast compared
to Bowtie + RSEM as implemented in Trinity pipeline.
We decided not to use EdgeR in the second pipeline as
EdgeR requires setting a dispersion factor that was hard
to evaluate for our artificial samples. EBSeq is an empirical
Bayesian approach that directly models differential variabil-
ity as a function of the number of isoforms, providing a
good approach for isoform level inference. No assumption
has to be made as the expectation–maximization algorithm
is used for estimating all parameters through an it-
erative procedure until convergence. EBSeq is also capable
to identifying DE genes. We acknowledge that several
other pipelines could have been tested. Yet, evaluating
pipelines is beyond the scope of this study that focuses on
the impact of sequence type. We chose two different pipe-
lines to make sure they did not affect our results.

Short-read sequences mapping
To simulate 50 base pairs paired-end (50 bp PE), 100 bp
single-end (100 bp SE) and 50 bp single-end (50 bp SE)
reads, initial 100 bp PE RNA-seq reads were trimmed or
pairing information removed. Each different set of reads
was mapped back to the de novo transcriptomes (Table 2).
The ca. 10% difference between paired-end and single-end
mapping can be explained by the fact that single-end map-
ping doesn’t have any pairing constraint. Paired-end back
mapping percentages are thus lower as any repetitive short
read sequence should be placed more reliably since its
mate contributes to mapping information. Both species
showed similar back mapping percentages between assem-
blies built from paired-end reads and assemblies built
from single-end reads (PE and SE assemblies; Table 2), al-
though statistics show that the PE assembly is substantially
larger than the SE assembly (Table 1). Furthermore, genes
and isoforms are longer in PE assembly compared to SE
assembly. This supports previous observations that PE as-
sembly outperforms SE assembly in terms of sensitivity
and specificity [12].

Differential expression analyses
Because we are testing differential gene or isoform ex-
pressions of a sample with itself, the expectation is to
find no differential gene expression. Indeed, if any read is
distinctive enough from others, it should be unambigu-
ously mapped back to the transcriptome. If pairing type
or sequence length would not affect the reads specificity,
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the different datasets should have exactly the same genes
and isoforms abundance and no differential expression
should be observed. As shown in Figures 2 and 3, only
sets that are exactly of the same length and pairing type
show this trend (“same data” line). False positives appear
when modified RNA-seq datasets are compared. Any ob-
servation of differential gene expression means that strat-
egies between data sets affect the abundance estimates.
Comparing Figures 2 and 3 shows that pipeline strat-

egies do not have much impact on DE at gene level: dif-
ferences observed in false positive rates are minor.
Interestingly, these results suggest that the use of a
gapped alignment, which may seem unnecessary as reads
are directly mapped to transcripts, does not affect the re-
sults. In fact, Bowtie2 showed extremely good results
when coupled to eXpress, the latter handling multimap-
ping very well. At the isoform level, on the contrary,

the second pipeline clearly outperforms the first one
(Figures 2 and 3). This result is not totally unexpected as
EBSeq approach was developed mainly for isoform differ-
ential expression studies [19]. Because pipeline 2 gives
better results at the isoform level compared to pipeline 1,
only results from this pipeline will be discussed in the fol-
lowing for concision and clarity purposes. However, the
pipeline choice does not affect our conclusions.

Sequence length
In both species, reducing sequence length had little im-
pact on gene expressions (Figure 3, “Length” lines): FPR
adds up to 0.3% for PE sequences and about 1% for SE
sequences. In the isoform approach, FPR gets approxi-
mately six times higher: about 2% for PE sequences and
6% for SE sequences. Sequence length influences FPR as
shorter reads have potentially more multimapping events

Table 1 Raw data and trinity assemblies statistics
Paired-end assembly Single-end assembly

Salix purpurea Rhytidophyllum vernicosum Salix purpurea Rhytidophyllum vernicosum

Number of sequences 72,121,862 74,653,202 72,121,862 74,653,202

Isoforms 185,052 165,516 157,076 135,863

Genes 92,450 70,662 86,087 66,261

Transcriptome length (bp) 249,828,609 289,064,658 192,652,014 214,836,625

N50 2,235 2,800 2,091 2,583

Figure 1 The two different bioinformatic pipelines used to assemble RNA-seq reads and analyze gene and isoform differential expressions.
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than longer reads as they are less specific. This uncer-
tainty results in different estimated counts for genes or
isoforms compared to longer sequences.

Paired-end vs. single end reads
To investigate the effect of reads pairing in differential
expression analyses, DE was tested between samples in
which counts were estimated with paired-end sequences
(100 and 50 bp) to samples in which counts were estimated
with single-end sequences (100 and 50 bp). Gene DE ana-
lysis of paired versus unpaired sequences resulted in FPR
of 1.7% and 1.6% (100 bp) and 3.1% and 2.7% (50 bp), for
Salix and Rhytidophyllum respectively (Figure 3, “Type”
lines). Whereas shortening sequence lengths had little con-
sequences in gene DE analyses, removing pairing attributes
had more impact on FDR. As for sequence length, isoform
DE is more affected in terms of FDR: for Salix, FPR
reaches 8.9% (100 bp) and 12.2% (50 bp), while it is 8.2%
(100 bp) and 11.3% (50 bp) for Rhytidophyllum. Again,
shorter hence less specific sequences result in higher FPR.
Lastly, DE results between datasets that varied in both

sequence types and lengths produced the expected results

given the previous observations on length and pairing attri-
butes. The highest FPR were observed when longest PE se-
quences (100 bp) were tested against the shortest SE
sequences (50 bp). Both Rhytidophyllum and Salix showed
a FPR of 2.9% for gene analysis and close to 12% for iso-
form analysis (Figure 3, “L +T” lines). When shorter PE se-
quences (50 bp) were tested against longer SE sequences
(100 bp), false positive rates were slightly lower both for
genes (1.8% and 1.9% for Rhytidophyllum and Salix, re-
spectively) and isoforms (8.4% and 9.4% for Rhytidophyl-
lum and Salix, respectively).
Although the main results are given in terms of FDR,

the overall pattern is the same when considering the cor-
relation in transcripts or genes counts for pairs of data-
sets (Figure 4). That is, scatterplots are more scattered
and correlations smaller for isoforms than for genes, and
the strong effect of sequence type can also be observed
(Figure 4).

Gene or isoform expression
FDR suggest that the impact of the type of sequence used
on DE is greater for isoforms than for genes (Figures 2, 3).
Overall, isoform DE analysis on Salix led to 4.6 times more
false positives than gene DE analysis. Interestingly, very
similar proportions were found for Rhytidophyllum (4.7 ×).
These results are not really surprising. Indeed, mapping
uncertainty resulting from smaller and SE sequences is ex-
pected to be most important between isoforms of a single
gene and less rarely among genes. Consequently, it is re-
assuring that gene DE is less affected by sequence type.
Nevertheless, one could argue that 1% of false positive is
not completely trivial considering the number of genes in-
volved in such analyses.

Table 2 Percentage of initial reads mapped back to the
de novo transcriptome

100PE 50PE 100SE 50SE

Salix purpurea PE assembly 83% 81% 90% 89%

SE assembly 83% 81% 91% 90%

Rhytidophyllum
vernicosum

PE assembly 88% 88% 95% 95%

SE assembly 89% 88% 95% 95%

PE assembly and SE assembly relate to the transcriptomes assembled with
paired-end or single-end reads respectively.

Figure 2 False positive ratios in DE experiment (pipeline 1) as a function of input data type.
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Effect of the transcriptome assembly strategy
Our results show that FPR are at their highest when
sequences of different pairing attributes are involved
(Figures 2, 3; “Type” lines). Considering that our obser-
vations were so far based on a transcriptome that was
assembled using PE sequences, an ensuing interroga-
tion is whether the intrinsic PE nature of the assembly
could inflate FDR for SE sequences datasets. We thus
performed the same analyses as above on another de

novo transcriptome assembled from 100 bp SE RNA-
seq data using pipeline 2 (Table 1; Figure 5). The results
obtained with this SE transcriptome are very similar to
those described above (Figure 3): for both species, over-
all gene FPR are lower by a ratio of 0.008 and overall
isoform FPR are lower by a ratio of 0.2. Moreover, both
figures display a very similar profile, suggesting that the
type of data used to assemble the transcriptome did not
affect our results on FDR. The slight decrease of the

Figure 3 False positive ratios in DE experiment (pipeline 2) as a function of input data type.

Figure 4 Scattered plots of isoform (red) and gene (blue) log-transformed expression between all Salix purpurea sequence sets. The
numbers indicate the Pearson correlation.
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FPR observed with the SE transcriptome assembly could
potentially be attributed to its smaller size in terms of
genes and isoforms relative to the PE assembly (Table 1),
which is likely to decrease read mapping uncertainty.

p-value threshold
Given that all previous calculations were based on a
standard p-value of 0.05, we investigated whether this
arbitrary threshold could affect our conclusions. This
could be the case, for instance, if the significant results
were always marginally significant; that is if p-value for
significant genes mostly fell between 0.05 and 0.01. The
distribution of p-values for all Salix isoforms and genes
clearly show that a more conservative p-value would not
affect our conclusions as the majority of the p-values
were below 0.001 (Figure 6). The distribution of p-values
for all Rhytidophyllum isoforms and genes, although not
reproduced here, show the same trend.

Limitations of the study
Our objective here was not to thoroughly explore all
possible parameters that could affect DE analyses with
respect to the sequencing strategy (e.g. sensitivity). Instead,
we wanted to investigate whether DE analyses could be af-
fected by the choice in sequencing strategy and broadly
quantify this error. We thus acknowledge that there are
limitations to the extrapolation of our conclusions to
other conditions or organisms. A first limitation is related
to the number of DE analyses pipelines investigated. Al-
though more pipelines could have been explored, this
was clearly not the aim of the study as aspects of differ-
ent pipelines have been compared elsewhere [1,3,21-24].

Our approach was to use very distinct approaches to val-
idate our results. Because the two pipelines gave similar
results, we think the bioinformatics aspects of this study
did not affect the main conclusions. Another limitation
comes from the fact that only two plants have been stud-
ied and it consequently might be difficult to extrapolate
our results to other organisms. Yet, because these two
species diverged more than 100 mya [25] and because
different tissues were used (buds and flowers), we think
our results are probably quite general in plants and that
they could even perhaps be extended to other eukaryotes
that have similar transcriptome characteristics (e.g., size,
isoform numbers, etc.). Finally, we purposely did not
include any biological replicate. Such replicates are
mandatory when analyzing differential expression as it al-
lows distinguishing treatment effects from individual
variance within treatments. Adding biological replicates
would probably have resulted in finding fewer DE tran-
scripts and genes in our analyses. But we deliberately
chose to ignore any replicate because we want to solely
observe the pure consequence of a given sequencing
strategy. Hence, our results show the intrinsic error due
to the sequence type in a DE experiment.

Conclusions
With the limitations mentioned in the previous section
in mind, our results show that the choice of sequence
type does have an impact on differential expression re-
sults. Interestingly, we found that using single-end in-
stead of paired-end sequences had a greater impact than
reducing the length of the sequences from 100 bp to
50 bp (Figure 3). These results make sense because the

Figure 5 False positive rates in DE experiment (pipeline 2) as a function of input data type when abundance is estimated on the
single-end assembly.
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paired-end information reduces uncertainty during read
mapping. For instance, if a pair of reads is essential for
the accurate mapping of this pair to one specific isoform
of a gene, then disrupting the pair will result in one read
being mapped ambiguously to two or more isoforms of
the gene. This uncertainty results in biased estimated
abundance frequencies of isoforms. For instance, Table 3
reports the abundance estimates for the four isoforms of
one randomly chosen Rhytidophyllum vernicosum gene
(i.e. Trinity cluster), which illustrates how relative abun-
dances can differ between SE and PE datasets. The total
number of transcript counts, which was found to be
higher for SE than for PE datasets (Table 3), also high-
lights the greater uncertainty resulting from SE reads.
The fact that such uncertainty in mapping occurs less
frequently among genes likely explains why the FDR was
less important for genes than for isoforms. Finally, the
smaller impact of sequence length on FDR than pairing
type can probably be explained because the distance
covered on the transcript by the length reduction is less
important than when pairing information is removed.
Overall, our results suggest that paired-end sequence

is relatively crucial for obtaining precise isoform differ-
ential expression. We also suggest using paired-end

sequences for gene DE, even though this is less critical.
Indeed, the mapping uncertainty remains important for
gene count estimation with single-end sequences: com-
parisons of counts obtained with paired-end vs. single-
end resulted in almost 2% false positives. If someone is
to make economies, the best solution seems to be to se-
quence 50 bp paired-ends rather than 100 bp paired-
ends (for fragments of the same length). This approach
seems to result in very small differences in count estima-
tion for both genes and isoforms.

Methods
Transcriptome assembly
Prior to assembling reads, Trimmomatic [26] was used
to remove bad quality Illumina RNA-seq data and trim
poor quality nucleotides at the beginning and the
end of each sequence. The following parameters were
used in the command line: LEADING:15 TRAILING:15
SLIDINGWINDOW:5:15 MINLEN:40. For the assembly,
Trinity software [4] was used to reconstruct the transcrip-
tome de novo using default settings. Gene sequences were
obtained using isoform union method consisting on quali-
fying as “gene”, the union of transcripts identified by Trin-
ity as isoforms of the same gene.

Read mapping
We used two different approaches to map RNA-seq
reads to the reference transcriptome: Bowtie [14] that
maps reads to a reference without allowing any gap,
and Bowtie2 [17] that allows gaps during mapping.
Bowtie was run as a part of Trinity pipeline. The fol-
lowing parameters were used in the command line:
alignReads.pl –left R1.fastq –right R2.fastq –target
Trinity.fasta –seqType fq –aligner bowtie –max_dist_
between_pairs 800 – -p 16. In Bowtie 2, the following

Table 3 Rhytidophyllum vernicosum transcript counts for a
gene and total number of transcript counts for 100 bp PE
and 50 bp SE sequence datasets

100 bp PE counts 50 bp SE counts

Isoform 1 0 (0%) 79 (21%)

Isoform 2 3 (1%) 1 (0%)

Isoform 3 47 (17%) 84 (22%)

Isoform 4 219 (81%) 210 (56%)

Numbers represent raw counts and relative frequencies are given in parentheses.

Figure 6 Isoform (in red) and gene (in blue) p-values distribution. Only values between 0 and 0.05 are represented.
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parameters were used: Bowtie2 -X 800 -p 16 -x Bowtie_
Index −1 R1.fastq −2 R2.fastq | samtools view -Sb.

Transcript abundances
We used two different algorithms to compute abundances:
an expectation-maximization algorithm (RSEM [15]) and
an online method algorithm (eXpress [18]). As part of
Trinity proposed pipeline (pipeline 1), RSEM was used to
calculate isoform and gene abundances. The following
parameters were used in the command line: run_RSEM_
align_n_estimate.pl –transcripts Trinity.fasta –seqType
fq –left R1.fq –right R2.fq. In pipeline 2, eXpress was
coupled to bowtie2 aligner to calculate isoforms and genes
abundances.

Differential expression
The function of differential expression analysis is to point
up isoforms or genes for which abundances changed sig-
nificantly across experimental conditions. EdgeR [16],
used in pipeline 1, handles the lack of biological replicate
by simulating it, although the variance parameter was
hard to evaluate. We chose to use 0.01 for this parameter
since this is the value proposed for technical replicates.
We ran EdgeR as part of the Trinity pipeline with the
following command line: run_DE_analysis.pl –matrix
counts.matrix –method edgeR –dispersion 0.01. EBSeq
[19], used in pipeline 2, was developed specifically to
counter biases in isoform differential expressions. We
followed the EBSeq user manual instructions and used 15
iterations for convergence at a FDR of 5%.
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