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Abstract

I introduce the software ML that tests for the presence of hybridization in multispecies sequence data sets by posterior
predictive checking following Joly, McLenachan and Lockhart (2009, American Naturalist 174, e54). Although their method
could potentially be applied on any data set, the lack of appropriate software made its application difficult. The software
ML thus fills a need for an easy application of the method but also includes improvements such as the possibility to incor-
porate uncertainty in the species tree topology. The jML software uses a posterior distribution of species trees, population
sizes and branch lengths to simulate replicate sequence data sets using the coalescent with no migration. A test quantity,
defined as the minimum pairwise sequence distance between sequences of two species, is then evaluated on the simulated
data sets and compared to the one estimated from the original data. Because the test quantity is a good predictor of hybrid-
ization events, departure from the bifurcating species tree model could be interpreted as evidence of hybridization.
Software performance in terms of computing time is evaluated for several parameters. I also show an application example

of the software for detecting hybridization among native diploid North American roses.
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Introduction

Hybridization is an important evolutionary process
(Arnold 1997; Barton 2001). Its role in speciation
(Rieseberg 1997; Rieseberg et al. 2003; Seehausen 2004;
Mallet 2007) and adaptation (Arnold 2004; Joly &
Schoen 2011) is understood theoretically and has also
been confirmed experimentally. Yet, the role of hybrid-
ization is hard to confirm in many instances because it
is often difficult to find statistical evidence for hybrid-
ization. Here, the term hybridization is used in the
broad sense. That is, it refers both to the event, the suc-
cessful mating between individuals from two distinct
species, and its outcomes: hybrid speciation and intro-
gression, where introgression is the transfer of genetic
material between species via sexual reproduction. Typi-
cally, hybridization is detected using measures of gene
tree incongruence (Funk & Omland 2003), either among
gene trees or between the gene tree and the species tree,
although other processes can be in cause. Thus, distin-
guishing between hybridization and other processes
resulting in gene tree incongruence is a critical issue in
evolutionary biology. A specific question that has
received much attention is that of distinguishing incon-
gruence caused by introgression from that caused by
incomplete lineage sorting. Incomplete lineage sorting
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arises when ancestral polymorphisms present in the
ancestral species have not been completely sorted out
by genetic drift in the daughter species, resulting in
nonmonophyletic species. Even though several meth-
ods have been described to address this problem, none
provide a clear and general test for the presence of
hybridization (reviewed in Joly et al. 2009).

Joly et al. (2009) proposed a method based on the idea
that incomplete lineage sorting imposes a limit to the
minimum expected distance between sequences of two
species because the sequences compared have been
diverging since the speciation event. Such limit does not
exist for introgressed sequences. Consequently, it should
be possible to statistically identify introgressed sequences
when the pairwise distance between sequences found in
two distinct species is smaller than that expected under a
lineage sorting scenario. Simulations have confirmed that
this statistic is able to detect introgression, although the
success rate depends on several parameters: the relative
timing of the hybridization and of speciation events, the
population sizes and the sequence length (Joly et al.
2009). The method of Joly et al. (2009) has the potential to
be applied on any data set, but the lack of software imple-
menting the method has limited its use. Here, I introduce
the software jML that implements the posterior predictive
approach of Joly et al. (2009). I also improve the original
approach by accounting for the uncertainty in the species
tree topology.
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Formal description of the test

In jm, posterior predictive checking is used to test for the
presence of hybridization. The software uses as input a
posterior distribution of species trees (S) with branch
lengths (I) and population sizes (0). This posterior distri-
bution is generally defined as

P(S,1,0|D) o</(ﬁP(dﬂgJP(g;S))P(S)dG.
Z \i=1

D is the data that consist of n multiple sequence
alignments (d,). The equation integrates over all possible
gene trees (G) for all alignments, and g; represents one
specific gene tree. P(d;|g;) is the likelihood of the data
given the gene tree (Felsenstein 1981), P(g;!1S) is the
multispecies coalescent (Rannala & Yang 2003; Degnan &
Rosenberg 2009) and P(S) is the prior on species trees.

Replicated data sets are simulated from the posterior
distribution P(S, [, 01 D). A test quantity is then estimated
on the observed data and on the simulated data sets to
see how well the model is consistent with the data. This
approach of posterior predictive checking is commonly
used in Bayesian analyses to check the adequacy of a
model (Gelman ef al. 2004); if the test quantity estimated
on the observed data departs strongly from the quantities
estimated from the simulated data, then we can conclude
that the model is inadequate. Here, the test quantity used
is the minimum pairwise distance between sequences of
two species (minDist), which has been shown to be a use-
ful quantity for detecting hybridization (Joly et al. 2009).
In the presence of hybridization, minDist can sometimes
be much smaller than that expected in a scenario without
hybridization. Suppose that minDist(AB) represents min-
Dist between species A and B on the observed data and
that minDist(AB)*™ represents minDist between species
A and B on simulated data. The P-value for hybridization
between species A and B is

p = Pr(minDist(AB)<minDist(AB)™™).

The probability is taken over the posterior distribution
of parameters S, l and 6 (i.e. P(S, I, 61 D)) and the posterior
predictive distribution of minDist(AB)*™. This probability
can be approximated by simulation. If we simulate M data
sets from the posterior distribution P(S, I, 01D), we can
calculate minDist(AB)*™ on each simulated data set m
and the P-value is the proportion of these m simulations
for which minDist(AB) < minDist(AB)*™ ™ If the model is
good, then Pr(minDist(AB) < minDist(AB)*™) ~ 0.5. On
the contrary, a small P-value will indicate that the model
does not fit the data well. Because a small value is charac-
teristic of hybrid sequences in a data set, one can tenta-

tively conclude that the inaccuracy of the model is
because of the presence of hybrid sequences.

Implementation

Incorporating species tree topology uncertainty in poster-
ior predictive checking represents an improvement
compared to the original description of the method
where the species tree topology was fixed (Joly et al.
2009). This is performed using as input the posterior dis-
tribution obtained from *BEAST analyses (Drummond &
Rambaut 2007; Heled & Drummond 2010). *BEAST is a
Bayesian method that estimates the posterior distribution
of species trees, branch lengths and population sizes
using sequence information from multiple genes. Note
that posterior distributions from other programmes
could also be used in ML as long as the tree file is in the
same format as the *BEAST nexus format. For the simula-
tions, species trees (with branch lengths and populations
sizes) are sampled from the stationary phase of the
Markov Chain Monte Carlo.

For each species tree, a gene tree is then simulated
using the coalescent. The code for the gene tree simula-
tion routine was adapted from MCMCcoal (Yang 2007).
The number of gene copies simulated per species is the
same as in the original data set. The user can scale
the species tree population sizes using a heredity scalar
to reflect the effective population size of the marker being
simulated. Similarly, the mutation rate of the species
tree can also be scaled for the simulations to allow the
possibility that the mutation rate of the marker being
simulated is not the same as the mutation rate implied in
the species tree.

Sequences are then simulated on the gene tree. This
was implemented by adapting the code of the software
seq-gen 1.3.2 (Rambaut & Grassly 1997), which allows
any nucleotide substitution model to be used. This proce-
dure is repeated for all species trees of the posterior
distribution (or a subset of them). Finally, ML outputs the
posterior predictive distribution of the smallest distances
between sequences of any two species of the data set,
from which P-values could be estimated. ML can also
output the exact P-value for each pairwise species
comparison if the empirical sequence data set is given.

Interpretation and multiple comparisons

Different approaches can be used for interpreting results
from posterior predictive checking. An intuitive one is to
interpret the P-value(s) directly. The P-values estimated
by JML are posterior probabilities (Gelman et al. 2004) and
can be interpreted as the probability that the model will
generate a minimum distance between sequences of two
species smaller than that observed from the data, given
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the data. However, appealing this interpretation, it could
lead to statistical issues when multiple tests are per-
formed. Indeed, the need to correct for multiple statistical
testing (Rice 1989) diminishes the likelihood of finding
statistically significant results. This is especially problem-
atic for the present application because the large variance
in mutation rate for short sequences (Edwards & Beerli
2000), combined with the difficulty to get long nucleotide
sequence stretches that lack the evidence of recombina-
tion in practice, results in power issues (Joly ef al. 2009).
The problem is even more acute when the approach is
used in an explorative way, that is, if there are no a priori
hypotheses of hybridization to test and if JML is only used
to investigate the presence of hybridization in the data
set. In such cases, all pairwise species comparisons can
be tested simultaneously and the statistical power will be
greatly affected. To minimize power issues, it could thus
be important to specify hybridization hypotheses a priori
without reference to the sequence data.

There is an alternative interpretation of posterior pre-
dictive checking, which is to see ‘how particular aspects
of the data would be expected to appear in replications’
(Gelman et al. 2004). For instance, we could evaluate the
overall adequacy of a model by assessing whether there
are some aspects of the data that are not well predicted
by the model. To do this, it would be of interest to report
all observed distances that have a low probability of
being observed, e.g. distances with P < 0.1 (this value is
arbitrary and can be fixed by the user). This could indi-
cate species comparisons where the model cannot ade-
quately predict the observed minimum distances. If there
were several of those instances, one could thus conclude
that a strictly bifurcating species tree model is not ade-
quate, probably because of the presence of hybridization.
Note, however, that this is not the same as concluding
that there has been hybridization between two given
species. With such interpretations of posterior predictive
distributions, the type I error is less of a concern because
we use posterior predictive checking to evaluate the fit
of the model rather than to test a specific hypothesis
(Gelman et al. 2004).

Regardless of the multiple comparison issues associ-
ated with posterior predictive checking, there are two
points that should always be kept in mind when inter-
preting results from mr. First, posterior predictive
checking is a test of the model and not of hybridization.
If one rejects the model (bifurcating species tree without
gene flow), this may well be because of the presence of
hybridization, although it could also be due to other
properties of the data such as undetected gene duplica-
tion (Maddison 1997), population substructure along
the branches of the phylogeny (Machado et al. 2002)
and parallel evolution (Joly et al. 2010). The second
point to take into account is that a lack of evidence for
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hybridization with JML should not be interpreted as an
absolute absence of hybridization in the data set
because (i) a lack of statistical significance can also be
caused by a lack of data and (ii) not all hybridization
events leave a detectable molecular signature (Joly et al.
2006, 2009).

Performance

Thorough simulations regarding the performance of the
test statistic have already been conducted for several
parameters such as sequence length, population size,
speciation time and time of the hybridization event (Joly
et al. 2009). Here, I report results on the impact of differ-
ent parameter values on computing time. The parameters
investigated were the number of species (5, 10, 15), the
number of sequences per species (5, 10, 15), the number
of simulations (1000, 2000, 4000) and the sequence length
(500, 1000, 1500). Random species trees were simulated
under a birth and death model with the R package ‘gei-
ger’ (Harmon et al. 2008); the birth and death parameters
were set to 0.00025 and 0.000125, respectively, and the
phylogeny was evolved for 0.01 units of time. These set-
tings resulted in phylogenies with a tree depth
(time x mutation rate) similar to that of empirical data
sets (Joly et al. 2009). The first phylogenies obtained with
five, ten and fifteen extant species were retained for the
simulations (extinct species were pruned from the tree).
Mutational population sizes (0 = 4N,u) for the branches
of the tree were generated randomly by sampling from a
truncated normal distribution with mean and standard
deviation of 0.005, with a lower cut-off of 0.0001. Again,
this is similar to empirical observations. These phyloge-
nies were treated as ‘fixed” and JML generated simulated
data sets (using the GTR + I+ I' substitution model)
using combinations of the parameters mentioned earlier.
Because repeated runs had very small coefficients of vari-
ation (0.5%), only one full run was performed for each
combination of parameters. Simulations were performed
on a HP desktop computer with an Intel core2 duo CPU
at 2.33 GHz with 2 Gb of RAM.

The results show that the computing time for a com-
plete run grows linearly with the number of data sets
simulated (data not shown) and with the sequence length
(Fig. 1a). In contrast, the computing time increases
according to a power function relative to the number of
species and relative to the number of sequences per
species (Fig. 1b).

An application example—North American roses

To give an application example of the software, I reana-
lyse here sequence data from three nuclear genes for the
native diploid roses of North America. Three nuclear
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Fig. 1 Performance of the jML software in terms of computing
time for (a) different sequence lengths and number of sequences
per species, keeping the number of species to 10, and for (b)
different number of species and sequences per species, keeping
the sequence length to 1000 bp.

genes (GAPDH, TPI and MS) have been sequenced for 46
individuals from eight species and have been analysed
with distances and gene tree parsimony approaches
(Joly & Bruneau 2006, 2009). Alleles within individuals
were obtained through direct sequencing or via cloning
when an individual was heterozygous for a gene (Joly &
Bruneau 2006). Previous studies showed that there
might be introgressed sequences in the data set, i.e. some
sequences in one species are often either identical or
one mutation away from a sequence of another species
(Joly & Bruneau 2006). Yet, no formal tests of hybridiza-
tion have been conducted to date.

Previous studies could not find evidence of recombi-
nation in these data sets (Joly & Bruneau 2006), and thus,
the three genes could be analysed integrally. Species
tree analyses were performed in *BEAST. The nucleotide
substitution model used was the one that received the

highest Akaike Information Criteria (AIC) score in
MODELTEST 3.7 (Posada & Crandall 1998) when fitted on a
maximum likelihood tree obtained from five indepen-
dent searches in Garli 1.0 (Zwickl 2006) with a GTR +
I + T substitution model. A strict clock was used for all
genes; the rate of the GAPDH gene was set to 1, and the
rate of the other genes was estimated relative to GAPDH.
Population sizes were modelled as constant along
branches. More details on parameters and priors can be
found in Data S1 (Supporting information). The analysis
was run for 107 generations, recording the trees and
parameters every 10* generations, and the first million
generations were discarded as burnin. Independent runs
converged on the same parameter values and species
tree topologies.

The species tree obtained with *BEAST (Fig. 2) was
identical to one of the two most parsimonious species
trees obtained by gene tree parsimony (Joly & Bruneau
2009). The branch support was relatively high for most
nodes, but there is nevertheless clearly some uncertainty
in the tree topology which was clearly worth accounting
for in the hybridization tests. The wide branches along
the backbone of the tree are likely the results of gene tree
incongruence, which could be caused by either incom-
plete lineage sorting or hybridization.

The species trees (with branch length and population
sizes) estimated by *BEAST were then input into ML and
posterior predictive distributions generated for minDist
between all species for all genes. For each gene,

N\\

R. blanda R. palustris R. nitida R. foliolosa R. gymnocarpa

Population Size (6)

——
0 0.004 0.008

Divergence time (Tp)
T
0.004

T
0.003

0.002

0.001

R. pisocarpa

Fig. 2 Species tree of diploid North American roses obtained
with *BEAST. The branch widths are proportional to the esti-
mated population sizes, and the branch lengths are proportional
to their divergence times (both median estimates). The variations
in population sizes along the branches are a consequence of the
graphical representation; population sizes were constant along
branches, and the correct population sizes are those at the begin-
ning of the branches. Numbers besides branches represent the
posterior probabilities of the groups. The outgroup (Rosa setigera
and Rosa multiflora) is not shown.
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Table 1 List of distances with P-values < 0.1 according to the posterior predictive distributions

Gene Individual 1 Individual 2 Obs. distance P-value
TPI Rosa pisocarpa 847 Rosa gymnocarpa 543 0 0.0529
TPI R. pisocarpa 847 R. gymnocarpa 751 0 0.0529
TPI R. pisocarpa 847 R. gymnocarpa 767 0 0.0529
TPI Rosa blanda 741 R. gymnocarpa 543 0 0.0812
TPI R. blanda 741 R. gymnocarpa 751 0 0.0812
TPI R. blanda 741 R. gymnocarpa 767 0 0.0812

The number designing the individual is the accession number. See Joly et al. (2006) for more details on accessions.

sequences of the same length as the original ones were
simulated according to the best substitution model and
parameter values as determined by the AIC in Model-
Test. The relative mutation rate used in the simulations
for each gene was set to the median posterior value
obtained from the *BEAST analyses. The species trees
from the first million generations were discarded as bur-
nin in jML, and the remaining 9000 trees were used for the
simulations. Because I did not have a specific hypothesis
of hybridization to test, I decided to investigate the
overall fit of the model and report all observed distances
that had a probability < 0.1 of being generated by the
posterior distribution.

Six distances between alleles were smaller than the
10th quantile in the posterior predictive distributions
(Table 1). These involved one individual of Rosa blanda
(incl. Rosa woodsii) and one of Rosa pisocarpa, each with
three individuals of Rosa gymnocarpa for the TPI gene.
Although the observed distances are not statistically
significant at the 5% level, they are small enough to sug-
gest that the model does not explain these observations
very well. In other words, although there is not statistical
evidence for a hybridization event between R. gymnocarpa
and R. blanda/R. pisocarpa, the data suggest this could be
the case. Hybridization could have occurred in different
ways, but most likely towards R. gymmnocarpa given that
R. gymnocarpa sequences are nested with a R. blanda/
R. pisocarpa clade (see Fig. S1, Supporting information),
whereas the species trees suggest R. gymnocarpa is basal
to the other species (Fig. 2). Because both R. blanda and
R. pisocarpa share the introgressed allele, the hybridiza-
tion event could have occurred between either of
these species and R. gymnocarpa or between the ancestor
of R. blanda and R. pisocarpa and R. gymmnocarpa. More
data are needed to confirm these hypotheses. For
instance, the addition of genes might help to narrow
down the confidence intervals of the species tree and
perhaps provide stronger statistical results in the future.

One interesting observation from this example is that
although there were several cases of shared alleles
between species (Rosa nitida and Rosa palustris (TPI, MS,

© 2011 Blackwell Publishing Ltd

GAPDH), R. pisocarpa and R. blanda (TPI, MS, GAPDH),
R. blanda and Rosa foliolosa (MS), R. blanda and R. nitida
(TPI); see Fig. S1, Supporting information), none of these
were found to be significant. In other words, even rela-
tively good evidence for the presence of hybridization
such as identical sequences between nonsister species
does not mean that it is necessarily caused by hybridiza-
tion. Owing to stochasticity in the coalescent process and
in the mutation rates for short sequences, it is relatively
difficult to statistically infer hybridization events from
empirical data. In the present example, only one possible
instance of hybridization was confirmed. In this case,
identical sequences were found in a putative hybrid
formed between two of the most diverged species in the
group.

This application example shows why it is important
to test hybridization hypotheses. Lack of significance
could mean that hybridization is not responsible for
the observed pattern, but it could also stimulate the
gathering of additional data to eventually obtain statisti-
cal support for hybridization hypotheses. The statistical
approach implemented in ML should thus help research-
ers to attain a better knowledge regarding the presence
of hybridization in their study groups and hopefully
contribute to better understand the contribution of
hybridization to evolution.

Availability

ML is written in C++ and is released under the GNU
General Public License 3+. Source code and precompiled
binaries can be downloaded from http://www.
plantevolution.org/jmlLhtml. The manual of ML version
1.0 is available as Appendix S1 (Supporting information).
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Additional supporting information may be found in the
online version of this article.
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Data S1 xml file used for the *BEAST analyses of the
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Fig. S1 Individual gene trees of the North American
roses.
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