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Predicting the fitness consequences of mutations, and their

concomitant impacts on molecular and cellular function as well

as organismal phenotypes, is an important challenge in biology

that has new relevance in an era when genomic data is readily

available. The ability to construct genomewide maps of fitness

consequences in plant genomes is a recent development that

has profound implications for our ability to predict the fitness

effects of mutations and discover functional elements. Here we

highlight approaches to building fitness consequence maps to

infer regions under selection. We emphasize computational

methods applied primarily to the study of human disease that

translate physical maps of within-species genome variation

into maps of fitness effects of individual natural mutations.

Maps of fitness consequences in plants, combined with

traditional genetic approaches, could accelerate discovery of

functional elements such as regulatory sequences in non-

coding DNA and genetic polymorphisms associated with key

traits, including agronomically-important traits such as yield

and environmental stress responses.
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One of the great challenges in biology is to determine the

fitness consequences of individual polymorphisms across

the genome. Over the last few years, high-throughput

functional genomics and whole genome resequencing have

enabled discovery of functional elements in non-coding

DNA and comprehensive descriptions of single nucleotide

polymorphisms (SNP) and other genetic variants in plant

genomes. For example, genome-wide SNPs have been
www.sciencedirect.com 
catalogued for many species including Cicer (chickpea) [1],

Zea (maize) [2], Oryza (rice) [3], date palms [4], and

Chlamydomonas [5], and the 3000 Rice Genomes Project

recently reported more than 30 million polymorphisms in

3024 rice varieties [6��]. In the next few years such ‘SNP

atlases’ will become available for many other crops and

their wild relatives.

With whole genome sequences now widely available,

evolutionary biologists are revisiting the long-standing

challenge [7,8] of predicting the fitness effects of muta-

tions. In principle, expanding these predictions to a

genomewide scale would allow us to construct maps of

fitness variation that describe the probability that a mu-

tation will impact fitness and predict both the magnitude

and sign (i.e. beneficial or deleterious) of their effect. In

practice, estimating the fitness effect of mutations

remains one of the great objectives in molecular evolution

[8], but recent advances in diverse evolutionary and

experimental approaches have improved the prospects

of constructing maps of fitness consequences in plant

genomes.

Maps of fitness consequences have potentially widespread

applications. From an evolutionary perspective, they pro-

vide a basis for predicting whether a mutation is beneficial

and improves a fitness-related trait or is deleterious and

negatively impacts traits such as crop yield or resistance to

disease that are targeted for improvement. From the per-

spective of molecular biology, maps of fitness conse-

quences provide clues as to which positions in the

genome impact a cellular function (Box 1). Since mutations

that impact fitness must also affect function, identification

of sites that affect fitness may assist with quantifying the

fraction of the genome that is functional — a subject of

recent controversy in human genetics [9] — and identify-

ing polymorphisms that modify traits of interest [10,11].

Here we review recent advances in methods to construct

genomewide maps of fitness variation. Although many of

these approaches have primarily been applied to the

study of human diseases, we focus on methods that are

applicable to plants and highlight how they may pro-

foundly improve efforts to discover functional elements

in plant genomes.

Genome-wide maps of fitness consequences
Regions of the genome that are conserved in evolution

represent a special class of sites, where purifying selection
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Box 1 The link between fitness and function.

Mutations that impact fitness must also impact a cellular function.

This observation is the basis for applying principles of molecular

evolution to assess the impact of a mutation’s function indirectly by

predicting its fitness effect. Such fitness effect predictions are made

through methods based on population genetics theory that quantify

the proportion of sites under selection or the strength of selection

acting on collections of sites in the genome (Box 2).

What is the relationship between fitness and function? The fitness-

function relationship is the extent to which a change in allele function

will lead to a change in fitness. This relationship is often assumed to

be linear. However limited experimental data indicate non-linear

relationships that vary from locus to locus and depend on genetic

background and the environment [65]. Rest et al. [66�] quantified the

effect of changes in expression in LCB2 in yeast on fitness and

reported an ‘S’-shaped, or sigmoidal, relationship. Hartl et al. [65]

quantified this relationship for activity at b-galactosidase and fitness

in E. coli and found it approximates a saturation curve as it does in

other metabolic contexts. The exact nature of the relationship

between fitness and function is sure to be complex and will remain

unknown except for exceptional study systems.
has preserved a sequence over long periods of evolution-

ary history. Constraint-based, or conservation-based

methods aim to identify these slow evolving sequences

and the functional elements they encode using multiple

sequence alignments from phylogenetically diverse spe-

cies. In practice, such ‘phylogenetic footprinting’ meth-

ods assign scores to positions in the genome indicating the

degree of conservation across species [12–14] (Box 2)

thereby enabling the discovery of elements that, when

mutated, are expected to impact fitness. Application of

these approaches in plants benefits from 70 published

genomes [15], which enable the localization of sequences
Box 2 Evolutionary genetic approaches to mapping fitness

effects to the genome

The development of maps of fitness consequences benefit from a

number of complementary approaches.

� Constraint-based methods: These methods primarily use phylo-

genetic and homology-based inference to identify sites with low

rates of substitution across a phylogeny. Sites are assigned scores

that are typically interpreted in the context of fitness (e.g. neutral

vs. deleterious) without the need to pre-classify sites into groups

[12–14].

� SFS methods: A class of methods that use a histogram of allele

frequencies, or SFS, to estimate the magnitude of fitness effects in

a pre-defined class of sites relative to a neutral class based on

allele frequency distributions. In principle, classes of sites subject

to selection can be distinguished from those evolving neutrally and

estimates of the distribution of fitness effects can be obtained [8].

� Comparative population genomic methods: This class of methods

uses intra-specific diversity and between-species divergence data

in pre-defined classes of sites to estimate the proportion of sites

subject to selection [24��] or the magnitude and sign of the fitness

effect [27]. Methods in this class require a neutral class of sites to

be contrasted with the site class of interest.

� Effect class methods: These methods predict the impact of

mutation on fitness or function by considering properties unique to

each effect class. Most methods return a score indicating the

likelihood that an individual mutation will impact function [67].
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that have been conserved over different evolutionary

time scales and discovery of functional elements restrict-

ed to closely-related species (Figure 1).

The power of such comparatives approaches is illustrated by

a genome-wide, high-resolution atlas of >90 000 conserved

noncoding sequences (CNSs) in the Brassicaceae family

[16��]. In this study, whole genome sequences from nine

closely-related crucifer species and intra-specific diversity

data from two species were used to establish that CNSs

sequences identified in multi-species alignments are under

purifying selection in Arabidopsis thaliana and Capsella gran-
diflora populations [16��].

Constraint-based approaches rely on comparisons across

multiple species to detect functional elements main-

tained over million-year timescales [12–14] and can be

limited by a number of factors [17�] including low sensi-

tivity to recent changes in constraints associated with

either losses or gains in function in protein-coding genes

or non-coding DNA. For example, characterizing recently

evolved elements is limited by the fact that closely

related species sequences are conserved owing to recent

common ancestry and distinguishing between conserva-

tion owing to recent ancestry or evolutionary constraint is

problematic [17�]. In plant genomes, CNSs, such as

transcription factor binding sites (TFBSs), experience a

more rapid evolutionary turnover compared with animal

TFBSs [18��]. Thus, while constraint-based methods are

a powerful means to detect elements associated with

ancient conserved functions, they are limited in their

ability to characterize elements conserved over shorter

timescales, like plant TFBSs.

The site frequency spectrum (SFS) is a histogram of allele

frequencies, which can be used to infer population de-

mography, identify genomic regions subject to selection,

and estimate the distribution of fitness effects of muta-

tions [19]. The shape of the SFS is sensitive to the

strength of selection acting on a class (e.g. nonsynon-

ymous) of mutations; purifying selection, for example,

shifts the site frequency spectrum towards lower fre-

quencies relative to neutral mutations. SFS methods

can thus estimate the distribution of fitness effects (i.e.

the fraction of sites subject to different magnitudes of

selection, Box 2).

In the context of the study of fitness consequences of

genetic polymorphisms, SFS methods have been used to

estimate the proportion of new mutations that are neutral,

weakly or strongly deleterious from population data

[20,21]. In practice, these methods incorporate the ob-

served shape of the SFS (Box 2) for both a neutral and a

selected class of mutation and apply numerical methods

to estimate the proportion of mutations that are under

selection by assuming a distribution of fitness effects and

incorporating population parameters such as the mutation
www.sciencedirect.com



Maps of fitness consequences for plant genomes Joly-Lopez, Flowers and Purugganan 103

Figure 1

A. thaliana (Col-0)

A. thaliana (Ler )

A. lyrata

B. oleraceae

S. lycopersicum

O. sativa indica

O. sativa japonica

O. glaberimma

Z. mays

P. dactylifera

Conserved
elements

fitCons

phastCons

GERP

Conserved within
species

Conserved 
noncoding 
element

Semi-conserved
elements

Elements with
rapid turnover

Current Opinion in Plant Biology

Comparison of constraint-based approaches and fitCons to uncover functional elements conserved over different evolutionary time scales in plant

genomes. The phylogeny shows representatives of diverged monocot and eudicot species as well as ecotypes for the species O. sativa and A.

thaliana. The grey blocks represent regions of the genome with the following characteristics: (left) conserved syntenic blocks across multiple

genomes, (middle) blocks showing stronger synteny between closely related species (A. thaliana and A. lyrata) but also having smaller elements

(e.g. conserved non-coding sequences) that are conserved across more diverged species (semi-conserved elements), and (right) blocks that show

intraspecies rather than interspecies conservation (rapid turnover). While constraint-based approaches (e.g. phastCons and GERP) are designed to

uncover conserved and semi-conserved elements, fitCons integrates both divergence between relatively closely related species and population

genomic data to enable the discovery of semi-conserved elements but also those exhibiting rapid turnover.
rate and effective population size [21]. Although these

methods are limited by a strong dependence on prior site

class definitions and the relative scarcity of intra-specific

polymorphism in strongly selected site classes, they

should enable characterization of deleterious mutations

in plant genomes [22,23�] and may assist in quantifying

the proportion of selected mutations.

Methods that combine population genomics and diver-

gence data represent a powerful means of discovering

sites in the genome with fitness consequences. Prominent

among these methods is the fitCons method, which

estimates the probability of fitness effects of mutations

in classes of sites defined by a common function (e.g. a

TFBS) by integrating intra-specific polymorphism and

between-species divergence data with functional geno-

mic information [24��]. Its foundation is a statistical

method called Natural Selection from Interspersed Gen-

omically Coherent Elements (INSIGHT) [25��], which is
www.sciencedirect.com 
conceptually similar to population genetics methods that

use patterns of polymorphism and divergence to identify

departures from neutral expectations [26–29] (Box 2).

The contrast between polymorphism and divergence is

a powerful approach to inferring recent selection and the

INSIGHT approach to pooling dispersed sites enables

the discovery of noncoding elements that may have been

subject to recent selection [25��]. In this respect, fitCons

complements constraint-based methods by identifying

functional elements that are recent in origin (Figure 1).

To generate a fitCons map, genomic regions are first

partitioned into classes of sites that share similar func-

tional attributes determined across multiple assays (e.g.

RNA-seq, DNase-seq, ChIP-seq). To be successful, this

will require generating highly informative genomic data

types (e.g. non-redundant data sets) with high quality

sequencing (e.g. depth, assembly). Sites within a class are

assigned a fitCons score that reflects the probability of a
Current Opinion in Plant Biology 2016, 30:101–107



104 Genome studies and molecular genetics
fitness consequence of mutations as inferred by IN-

SIGHT. This approach has the advantage of being anno-

tation-free and facilitates prediction of cis regulatory

elements and measurement of the global influence of

recent natural selection across the genome [24��]. With

the increased availability of plant genomic and functional

data, we believe that the approach described by Gulko

et al. [24��] will facilitate assessment of the fitness effects

of mutations, estimates of the proportion of plant gen-

omes subject to selection, and discovery of functional

elements in plant genomes.

A related approach is the Combined Annotation-Depen-

dent Depletion (CADD) method that integrates informa-

tion from diverse genome annotations into a single

measure (C score) to identify putative deleterious, or

pathogenic, variants [30�]. The approach relies on muta-

tion-disease association databases such as ClinVar [31] to

train a machine learning algorithm to predict fitness

consequences. At present, this limits the application of

CADD to humans, but highlights the need for develop-

ment of comparable plant databases [30�,32].

Characterizing fitness effects by functional
effect class
Genomewide approaches to assess fitness consequences

are complemented by methods that predict the effects of

mutations in specific functional classes. Perhaps most well

known in this class of methods are those that evaluate the

effect of missense mutations on protein structure with the

aim of identifying pathogenic effects (e.g. Sift [33], Poly-

Phen2 [34], and Provean [35]). Many of these methods

make predictions by combining diverse sources of infor-

mation including sequence conservation across phylogeny,

protein structure, gene network topology (e.g. SuSpect

[36]), and clinical information on known mutation-disease

associations (e.g. GESPA [37]). Such methods may assist in

identifying mutations for crop improvement. For example,

Shihab et al. [38�] implemented the Functional Analysis

Through Hidden Markov Models (FATHMM) method to

prioritize mutations in starch pathways and storage proteins

for improvement in wheat.

Other methods aim to assess fitness effects of mutations

in other annotation classes including microRNAs (mrSNP

[39]), non-coding RNAs (RNAsnp [40]), and splice sites

(SNPlice [41]). Most of these predictive methods can be

implemented in plants and it should become possible to

pre-compute exhaustively the effects of all possible muta-

tions in each of these effect classes in well-annotated

plant genomes [42].

Mapping the effects of single mutations
Fitness is manifested through specific organismal phe-

notypes; thus, another way to examine the genetic basis

for fitness is via forward genetic approaches whose aim is

to associate mutations with traits of interest. Genetic
Current Opinion in Plant Biology 2016, 30:101–107 
mapping techniques including quantitative trait loci

(QTL) mapping and genome-wide association studies

(GWAS) have been widely applied in plant genomics to

map key phenotypes such as fitness-related traits rele-

vant to crop improvement [11].

When coupled with map-based cloning of causal muta-

tions, these methods complement genomewide maps of

fitness consequences by linking specific mutations to

traits of interest. For example, the seed protective struc-

ture called the awn, varies in structure and number among

cereal crop species. Long awns are found in the wild rice

Oryza rufipogon, while domesticated Oryza sativa rice have

been selected to have short or no awns to facilitate

harvesting and storage [43]. Mapping of phenotypes to

specific mutations such as awn traits to naturally-occur-

ring alleles in Awn-1 (An-1) and LONG AND BARBED
AWN1 (LABA1) genes in rice [44�,45�] greatly enriches

fitness consequence maps by both establishing the trait

impacted by specific mutations and suggesting a mecha-

nistic basis for the trait.

Characterization of selective sweeps provides another

means of further enriching fitness consequence maps

through the identification of regions associated with

the fixation of adaptive mutations. Such sweep regions

can be identified by various approaches, including local

reduction of genetic diversity [46], extended haplotype

homozygosity, or local skew in SFS [47]. Regions of

positive selection associated with local adaptation can

also be inferred by local elevation of sequence divergence

or reductions in gene flow using Fst outlier, and other

methods [48,49]. These techniques have been widely

applied in plant evolutionary genomics [49] and are the

basis for important conclusions related to crop domesti-

cation [50]. In practice, inferring selective sweeps is

challenging due to the confounding effects of population

demography as is characterization of the adaptive muta-

tion responsible for a selective sweep which may range in

size from �103 to 106 bps [51]. Nevertheless, when cou-

pled with fine-mapping approaches, these methods pro-

vide a means of enriching maps of fitness consequences

through the discovery of adaptive mutations.

Conclusion and outlook
As whole genome resequencing and functional genomic

datasets proliferate, the ability to distinguish among

neutral, deleterious or adaptive variants in the form of

fitness consequence maps will have increasing utility for

evolutionary geneticists and plant biologists.

While such maps of fitness consequences will be useful, it

should be noted that those generated by approaches such

as fitCons are probabilistic in nature and predict fitness

consequences for large groups of sites. These maps pro-

vide hypotheses for sites subject to selection and verify-

ing the impacts of individual mutations of interest will
www.sciencedirect.com
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require experimental validation [24��,52,53]. Fortunately,

new experimental approaches such as CRISPR/Cas and

deep mutational scanning [54�], offer the possibility of

systematically evaluating the impact of site-specific muta-

tions [55]. The CRISPR/Cas system has been applied in

multiple plant species including Arabidopsis [56�,57,58], rice

[56�], wheat [59], maize [60], sorghum [58], tobacco [57,58],

and citrus [61]. Other approaches involve developing and

improving high-throughput phenotypic facilities to simul-

taneously monitor multiple traits [62] or mutations [54�].

Another area that will require attention centers on the

need for appropriate repositories to visualize large-scale

datasets and fitness maps to facilitate the discovery of

functional elements. Phytozome [15] has recently ex-

panded the ability to visualize SNP data, VISTA conser-

vation tracks, and other whole genome plant datasets via

JBrowse [63], and CoGE [64] allows users to customize

their own instances of JBrowse and conduct comparative

analysis that should improve the ability to discover con-

served elements. Similar resources that facilitate visuali-

zation of information relevant to discovery of mutations

with fitness consequences will be important for identify-

ing candidate functional polymorphisms.

We envision that maps of fitness consequences can be

seen as part of a tool kit designed to discover gene regions

or mutations useful to quantitative geneticists, evolution-

ary plant biologists and crop breeders. For example,

genome-wide maps of fitCons scores coupled with the

location of putative selective sweeps or large QTL

regions could help in fine mapping genomic regions with

important alleles, and provide the basis of subsequent

functional analyses. Also, future applications for plant

genetics include targeting adaptive mutations (i.e. muta-

tions formed in response to an environment in which the

mutations were selected) by comparing multiple fitness

consequence maps of a given crop variety under different

environmental conditions (e.g. drought, high salinity).

Linking adaptive mutations to QTL-mapped traits would

also help distinguish mutations that have a deleterious

effect from mutations that may be locally adaptive under

certain conditions. Deleterious mutations could also be

targeted and potentially bred out of a population [23�].

Finally, fitness consequence maps not only have applica-

tions in inferring function in plant genomes, but can also

help in addressing long-standing problems in evolution

including estimation of the proportion of the genome that

is subject to selection and predicting the fitness conse-

quence of mutations in regions subject to selection.
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