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Evidence is increasing for positive effects of a-diversity on ecosystem function-
ing. We highlight here the crucial role of b-diversity – a hitherto underexplored
facet of biodiversity – for a better process-level understanding of biodiversity
change and its consequences for ecosystems. A focus on b-diversity has the
potential to improve predictions of natural and anthropogenic influences on
diversity and ecosystem functioning. However, linking the causes and conse-
quences of biodiversity change is complex because species assemblages in
nature are shaped by many factors simultaneously, including disturbance, envi-
ronmental heterogeneity, deterministic niche factors, and stochasticity. Because
variability and change are ubiquitous in ecosystems, acknowledging these inher-
ent properties of nature is an essential step for further advancing scientific
knowledge of biodiversity–ecosystem functioning in theory and practice.

The Importance of b-Diversity for Understanding the Causes and
Consequences
There is a growing body of evidence showing that biodiversity is important for generating and
stabilizing ecosystem functions, and thus ensures the provisioning of numerous ecosystem
services to society [1]. Theoretical, experimental, and observational studies across different
types of ecosystems and biomes [2,3] confirm positive effects of local-scale biodiversity on
ecosystem functions. The largest body of evidence exists for the linkages between local
species richness (a-diversity – the number and abundance of species within local communities
of interacting species) of plants and biomass productivity. Studies on species richness–
productivity relationships have substantially advanced our understanding of the mechanisms
underlying the functional roles of biodiversity [4–7]. Recently, research on the functional role of
biodiversity has broadened its view beyond a strong focus on productivity, simultaneously
considering the effects of diversity on multiple ecosystem functions [8–15]. A series of studies
have demonstrated that high levels of species richness are important for sustaining multiple
functions and services, and thus a loss of species can adversely affect the functionality of
ecosystems. However, another facet of biodiversity, which – as we posit here – is essential in
the context of ecosystem multifunctionality, has been considered relatively scantily in inves-
tigations of biodiversity–ecosystem functioning (see Glossary) relationships to date. The
multiscale nature of biodiversity, and specifically b-diversity – the variation in the identities and
abundances of species among local assemblages – has received much less attention com-
pared to a-diversity. Our aim here is to highlight the crucial role of b-diversity, by synthesizing its
mechanistic effect on biodiversity organization (and its responses to natural and anthropogenic
drivers), and by describing its association with the provisioning of multiple ecosystem functions.

Biodiversity–Ecosystem Multifunctionality
There is increasing concern regarding the causes and consequences of human-induced
b-diversity change [16,17], including biotic homogenization [18,19]. Homogenization of
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ecological communities could affect ecosystem functioning as strongly as, or even more
strongly than, the effects of local species losses or gains (changes in a-diversity; cf the spatial
insurance hypothesis [20]). While potential degradation of ecosystem functions and services
has been reported in response to a decline of a-diversity, for instance, similar investigations are
still widely lacking for b-diversity (Box 1). A perspective based on b-diversity is especially
important in the context of multifunctionality. This is because there is no ubiquitous species
assemblage that can simultaneously support all functions at high levels. Consequently, sus-
taining multiple functions requires different sets of local species assemblages (i.e., b-diversity)
in a heterogeneous environment [21]. Given that people depend on multiple, rather than
individual, ecosystem services simultaneously for human well-being, the growing theoretical
and empirical evidence for a positive contribution of biodiversity to ecosystem multifunctionality
is of high practical importance.

With increasing dimensionality of the functional context, any species could become funda-
mentally irreplaceable [10]. This and related notions (i.e., low multifunctional redundancy
[9,14,22]) are increasingly recognized in ecology, and underline the imperative to conserve
high levels of local diversity. While studies of biodiversity–multifunctionality have substantially
contributed to understanding why and how biodiversity is important, remaining uncertainties
include the inevitable trade-offs between different functions [12,14]. Sustaining all functions at
high levels in a single locality is unrealistic because ecosystems are heterogeneous in nature
(with spatial differences in species richness, identity, and composition), and because some
functions might be mutually exclusive. Recognizing the heterogeneous distribution of species
and functions across space and time calls for a more dynamic appraisal of diversity as a factor
that is not static but changes over space and time (e.g., the course of patch dynamics and
succession in a forest ecosystem).

The Causes and Consequences of Biodiversity Changes
Focusing on spatial attributes and levels of diversity is not necessarily new in the study of
biodiversity–ecosystem functioning [20,23]. Previous work showed that spatial and temporal
turnover in species can contribute towards simultaneously supporting different functions
[8–10]. New evidence for the effects of b-diversity (Table 1) is becoming available for different
groups of organisms from experimental [11], theoretical [24], and observational studies
[13–15]. Nevertheless, the observed patterns are not always consistent, likely resulting from
different definitions and metrics being used to define b-diversity, as well as a possible
dependence between a- and b-diversity (Table 1) (also see [25]). We thus cannot yet deduce
a generalized theory on the role of b-diversity in ecosystem functioning. Nonetheless, some
important implications have emerged that should be considered in future research. First, it is
indeed important to consider the effect of diversity at multiple spatial scales [26]. The role of
b-diversity and spatial scale in general in mediating the functional consequences of biodiversity
change is linked with the variations in local-scale diversity (different number and identities of
species in a local assemblage), resulting in local changes in ecosystem functioning that can
scale up to large-scale changes in the provisioning of multiple ecosystem functions [14,15].
Second, it is important to account for the mechanisms driving spatial variation in local diversity
so as to understand (and subsequently manage) diversity–ecosystem functioning relationships.
In these regards, it is worth focusing on the notion of Mokany et al. [27], who stated that the
‘insurance effects of b-diversity’ (to support ecosystem functioning [11,20]) may only signifi-
cantly manifest itself under spatiotemporal interactions between communities that are distrib-
uted non-randomly across large areas of space. That is, they emphasized the importance of
natural processes that organize biodiversity and in so doing support ecosystem function. It is
important to note that b-diversity is useful to infer environmental, spatial, and stochastic

Glossary
b-Diversity: the variation in the
identities and abundances of species
among local species assemblages. It
can be quantified in different ways,
including taxonomic, functional, and
phylogenetic dissimilarity, either
weighted by relative abundances or
not. Biotic homogenization is the
outcome of a human-induced
reduction in b-diversity.
Biodiversity–ecosystem
functioning: the study framework
that investigates possible
consequences of biodiversity change
on ecosystem functions. In
experimental studies, species
diversity is manipulated to quantify
the net effects of biodiversity loss on
ecosystem functioning. With the help
of advanced statistical methods,
non-manipulative studies are also
increasingly feasible for the
evaluation of the relationships
between biodiversity and ecosystem
functioning in real-world settings.
Biotic homogenization: an
anthropogenic impact on biodiversity.
Because of human-induced
decreases in environmental variability
(environmental homogenization),
species assemblages could increase
in similarity in terms of their
taxonomic, functional, and
phylogenetic composition across
locations. The term was originally
used to describe the replacement of
native by non-native species that can
result in a decline in community
dissimilarity over spatial and temporal
scales.
Community assembly: considers
the mechanisms by which local
species assemblages are organized,
and describes the final outcome of
these organization processes. There
is debate about whether the
outcomes of community assembly
processes result in a single, stable
equilibrium, alternative stable states,
or an alternative transient state. It is
often difficult to define the final
timepoint of community assembly
processes.
Deterministic processes:
contribute to the processes of
community assembly in predictable,
non-random ways. Important
processes of deterministic assembly
include species–environment
associations, habitat filtering,
competitive hierarchy among
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species, and interspecific niche
partitioning. Note that some other
processes such as dispersal
limitation and priority effect, which
are often considered to be stochastic
assembly processes (see below), can
also be under the control of
deterministic processes.
Stochastic processes: these
contribute to the process of
community assembly that follows the
mathematical theory of stochasticity
and is not necessarily predictable.
Important factors behind stochastic
assembly include historic
contingency (the order of arrival, i.e.,
the priority effect), ecological drift
(demographic or environmental
stochasticity), and dispersal
limitation. Note that it is often difficult
to identify the roles and contributions
of these factors to community
assembly, especially for observational
studies, which is why they are often
considered to be seemingly random.
However, some deterministic
processes can also operate within
the frame of these stochastic
processes.

determinants of community assembly for numerous organism groups [28–30]. Taken
together, focusing on this dimension of diversity has profound potential not only for quantifying
the large-scale importance of biodiversity to sustain the (multi)functionality of ecosystems but
also because it may contribute to a mechanistic understanding of processes underlying the
emergence of the observed patterns of spatial variation in species assemblages and functions.

The Many Faces of b-Diversity
Different patches of a natural system can be in different developmental stages at any given point
in time. Such asynchronous development enhances spatial variation in local biodiversity (i.e.,
b-diversity). Spatial and temporal processes underlying the origin and organization of biodi-
versity can thus not be fully separated. In the following we focus in particular on b-diversity in the
context of spatial differences in species composition across local communities within a
landscape (i.e., areas of 1–1000 km2). Assessing the spatial variability of species composition
is a useful measure to understand responses of communities to variable environmental
conditions and their consequences for ecological properties [31] (effect-and-response frame-
work of b-diversity).

The Additive Partitioning Methods
b-Diversity can be quantified in many ways [32–35], including factors such as species turnover,
nestedness, and richness differences [36,37]. The many definitions of b-diversity may be one
reason why this facet of diversity has not been a focus of studies on biodiversity–ecosystem
functioning to date. Depending on the choice of metrics, one can gain different results for
b-diversity. Consequently, it generally remains unknown which drivers behind the observed
pattern of b-diversity are most tightly associated with focal ecosystem processes. In manipu-
lative studies it may be feasible to control and separate the different factors underlying
b-diversity. However, because b-diversity is usually related to landscape-scale variation,
the applicability of manipulative studies is limited and their replication nearly impossible. In
this context, the method of b-diversity partitioning, which has strongly contributed to a more
rigorous understanding of community organization [37–41], could be an effective way to further
advance a mechanistic understanding of the roles of b-diversity in the support of ecosystem
functioning. Similar achievements have been made for the relationships between a-diversity
and ecosystem functioning based on methods to partition the net diversity effect into its
selection and complementarity components [4]. A possible linkage between the two partition-
ing methods is illustrated in Figure 1. It is worth focusing here on the initial evidence from
experiments of biodiversity–multifunctionality based on species turnover in functional contri-
butions [8,10]. As illustrated by Byrnes et al. [42], their results lie between the two extremes of
no species turnover and no species redundancy across functions. In other words, both the
number and identity of species are important to simultaneously supporting multiple functions.
Quantifying the relative contributions of richness and identity is important in theory and practice
[43]. Smith and Knapp [44] showed that dominant species can support ecosystem function
when species loss is nonrandom, although the long-term consequences of species loss remain
unclear. Lohbeck et al. [45] similarly found a primary control of dominant tree species on
supporting multifunctionality in tropical forests, although high levels of species richness were
important because of spatial and temporal turnover of species. Furthermore, Mori et al. [14]
identified a set of functionally important species of soil fungi that support belowground multi-
functionality, although the overall importance of species richness was larger than the contri-
butions of these species. If the number of species is more important than the identity of species,
management needs to shift its focus from a small set of focal species towards species richness
to ensure the provisions of ecosystem services. If species with a disproportionate effect on
ecosystem functioning can be identified, however, such information could be useful for
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Box 1. Possible Effects of Biotic Homogenization on Ecosystem Multifunctionality in a Landscape

Figure I shows that plant species assemblages in each locality support some focal functions (i.e., biomass production, crop production, nutrient retention, and
conservation of faunal diversity). Supporting all ecosystem functions in all single localities is unrealistic [14], and different sets of species in different local communities
are expected to support ecosystem functioning in a different manner [10]. Supporting multiple functions in a landscape thus needs a variety of species [13]. Reflecting
the spatial variation in species composition, ecosystem functions supported by local species assemblages should also be spatially variable in natural systems.

In this landscape (Figure I), plant species in local communities are drawn from a regional species pool consisting of different types of plants, including trees, grasses,
wildflowers, and ferns (A). Suppose this landscape has been affected by agricultural development, and thus only a small subset of plant species (mainly, non-woody
plants) remain in local communities. As a result of such anthropogenic filtering and the associated environmental homogenization (e.g., through irrigation, fertilization
or landscape simplification), species composition is similar among localities, leading to a decline in b-diversity (biotic homogenization) (B). Note that, in this landscape,
land-use intensification does not lead to a decline in the number of species and the functions supported by them; in other words a-diversity and the number of
functions above the threshold value of 50% of the maximum performance (MFT50) are maintained before and after biotic homogenization [mean a-diversity = 4 and
mean MFT50 = 2 for both (A) and (B)]. However, the decline in b-diversity results in a loss of functionality (i.e., loss of high functionality for timber production and
conservation of faunal diversity as a result of the loss of tree diversity; e.g., [13]), leading to a decrease in the total number of ecosystem functions in this landscape
[b-diversity of 0.67 and 0.33, and a landscape-level MFT50 of 4 and 2 for (A) and (B), respectively].

a-Diversity has been receiving special attention in the study of biodiversity–ecosystem functioning [11]; however, this example emphasizes that potential threats to
ecosystem functionality cannot be fully captured by such an exclusive focus on one spatial level of biodiversity (see also [23,31,46,58]).

In addition, note that landscape structure (e.g., complex vs simple landscape; Figure II) has been a long focus in applied ecology [66]; however, potential
consequences for b-diversity are less clear from these studies. An explicit focus on this scale of diversity would add to our mechanistic understanding of diversity
effects beyond a phenomenological characterization of heterogeneity.

(A) (B)

Regional
species pool

Regional
species pool

Local community Local communityFunc�ons provided Func�ons provided

Mean α  = 4
β = 0.67

Mean α = 4
β = 0.33

Mean MFT50  = 2
MFT50 = 4 (landscape)

Mean MFT50 = 2
MFT50 = 2 (landscape)

I

II

III

IV

I

II

III

IV

MFT50 = 2 MFT50 = 2

MFT50 = 2

MFT50 = 2

MFT50 = 2

MFT50 = 2

MFT50 = 1

MFT50 = 3

Figure I. Schematic Analysis of the Relationship between Plant Diversity and Four Ecosystem Functions at Different Scales. (A) Before and (B) after
abiotic and biotic homogenization caused by human activities. Each plant icon represents a different species, and those shown in grey are lost from a meta-
community because of anthropogenic filtering (systematically lost species [98]). Such environmental filters select a subset of species with specific traits that can
persist in a human-modified landscape [66]. a-Diversity is the mean number of species in local communities, and b-diversity is calculated based on Whittaker’s
multiplicative index (b = 1�mean a/g). Radial bar charts indicate the percent levels of individual functions (TP, timber production; CP, crop production; NR, nutrient
retention; CD, conservation of faunal diversity), which are evaluated based on the threshold approach [9]. Functions greater or equal to the threshold of 50%, and
those less than the threshold of 50%, are shown by black and grey bars in the diagram, respectively. MFT50 indicates the number of functions that exceed the
threshold of 50% of the observed maximum values for the given function. MFT50 is evaluated both at the local and landscape levels.
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management to select and prioritize species of interest and concern. In these regards,
b-diversity partitioning may be an intriguing approach with high theoretical and practical utility.

Linkages among a-, b-, and g-Diversity
Another complexity is that b-diversity can be affected by diversity at other scales, including a-
and g-diversity (total number of species in a region) [46–48]. Karp et al. [46] demonstrated the
scale-dependency of b-diversity responses to land-use intensification because of a sampling
effect. They showed that land-use intensification filtered bird species and thus reduced local
species richness of bird communities. At small spatial scales, drawing small samples from the
meta-community with low a-diversity could increase the likelihood that species composition
differs between locations (indicating high b-diversity in a highly intensified landscape). Once this
sampling effect was removed, b-diversity substantially decreased in highly intensified land-
scapes. They further found that community homogenization at large scales as a result of trait
filtering was followed by a decline in functional diversity (a similar example for plants is illustrated
in Box 1). Given the importance of avian functional diversity in supporting ecosystem services
[49,50] such as pest control [51] and seed dispersal [52], the impacts of such a diversity loss
could be enormous. This example highlights the difficulties as well as the potential of focusing
on b-diversity to infer anthropogenic influences on biodiversity and ecosystem functioning.

Heterogeneity, Determinism, and Stochasticity in Natural Ecosystems
Research on biodiversity and ecosystem functions is now moving towards evaluating the
potential importance of these relationships in real-world ecosystems, advancing beyond an
initial focus on experimental and manipulative results in model systems such as common
gardens [6,14,53–55]. Compared to experimental systems, natural systems have a high level
of spatial variation in biotic and abiotic characteristics. Considering environmental heteroge-
neity and interactions between species as well as stochastic factors affecting species
assembly, b-diversity could play a central role in understanding how these naturally diverse
and fluctuating communities are organized, and how such processes influence the function-
ing of ecosystems (Box 2).

(A) (B)

Figure II. Aerial Photographs of Different Landscape Structures. Examples for relatively (A) complex and (B) simple landscape configurations are shown.
Photographs are from Google Inc. The spatial extents are same for the two figure panels (roughly 2 km � 2 km).
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Table 1. Characteristics of Recent Studies that Quantify the Relationship between b-Diversity and Ecosystem Function(s)a

Study and region Focal taxa Focal function(s) Approach and dataset Note Refs

Pasari et al. (USA) Grassland plants Aboveground productivity,
root biomass, soil carbon,
nitrogen retention, invasion
resistance, insect richness,
insect abundance

Simulated artificial landscapes based
on experimental data were used.
b-Diversity was calculated with
Sørensen’s index; it is not fully
independent of a-diversity [33]. The
averaging and threshold approach
[9,42] were used to evaluate
diversity–multifunctionality
relationships

a-Diversity had strong positive
effects on individual functions
and multifunctionality, and
positive effects of b-diversity
emerged only when multiple
functions were simultaneously
considered. The study suggests
that, in addition to conserving
important species, maintaining
ecosystem multifunctionality will
require a landscape mosaic of
diverse communities

[11]

Silva Pedro et al.
(Germany)

Forest trees Primary productivity Simulations with a process-based
forest landscape and disturbance
model were conducted for a
temperate forest landscape.
b-Diversity was calculated via the
multiplicative law (g = ab),
representing the effective number of
distinct communities on the
landscape [38]. Productivity was the
focal ecosystem function

b-Diversity had a larger effect on
productivity than a-diversity,
especially at the later stages of
succession following
disturbance. The study suggests
that instead of homogenizing
areas affected by natural
disturbances, forest
management should incorporate
diversity created by disturbances
into stand development to
capitalize on a positive diversity
effect on productivity

[24]

Mori et al. (Japan) Soil fungi Belowground primary
production, soil carbon
sequestration, plant litter
decomposition (three
different substrates), amount
of plant-available nitrogen,
nitrogen retention

Observational data from a real
landscape were used. Local- and
landscape-level dissimilarities of
communities and functions were
quantified. Effects of a-diversity on
b-diversity were removed, based on
the modified Raup–Crick index [96].
The averaging method [97], multiple
thresholds [42], and a method based
on mixed models [14] were applied to
evaluate the diversity–
multifunctionality relationships

Unlike the positive effects of
a-diversity on multifunctionality at
the local scale, effects of
b-diversity on multifunctionality
were only prominent at the
landscape level. The study
suggests that making species
assemblages depauperate may
result in a loss of multifunctionality

[14]

van der Plas et al. (six
European countries)

Forest trees Timber quality, timber
production, root biomass,
litter decomposition, wood
decomposition, microbial
biomass, soil carbon stock,
tree regeneration, drought
resistance, insect herbivory
resistance, mammal
browsing resistance,
pathogen resistance,
earthworm biomass, bird
diversity, bat diversity,
understory plant diversity

Simulated artificial landscapes based
on observational data were used.
b-Diversity was calculated with
Lennon’s index; it is not fully
independent of a-diversity [34]. The
threshold approach [9] was used to
evaluate diversity–multifunctionality
relationships

The relationships between
b-diversity and landscape-scale
multifunctionality were always
positive. The study suggests that
it is important to conserve the
landscape-scale biodiversity that
is being eroded by biotic
homogenization if
multifunctionality is to be
maintained

[13]

Hautier et al. (65
study sites of the
Nutrient Network
Global Research
Cooperative)

Grassland plants Aboveground live biomass,
resource capture
aboveground (light
interception), resource
pools belowground
(percentage total soil nitrogen
and extractable

Observational data from the Nutrient
Network Global Research
Cooperative (NutNet). Pretreatment
data on community-level functions
were used, which means that
communities in the real-world
ecosystems were focused.

Grassland ecosystems with both
high a-diversity and b-diversity
had higher levels of
multifunctionality. In addition, the
identity of species influencing
ecosystem function differed
among functions and across local

[15]
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Biotic Homogenization
In this regard, one important issue to be considered is biotic homogenization [18] (Box 1), a
phenomenon describing the decline in b-diversity that is observed for many terrestrial
[31,46,56–59] and, to a lesser extent, marine assemblages [60]. It occurs because of the
loss of endemic species and/or the gain of cosmopolitan species [18]. The term is now widely
used to describe the homogenizing process in communities regarding their taxonomic,

Addi�ve par��oning of β-diversity Addi�ve par��oning 
of biodiversity effects

Nestedness component

Turnover component

Species dominance

Species turnover
          across communi�es

Possible contribu�on to the
mul�func�onal selec�on effect

Possible contribu�on to the
mul�func�onal complementarity effect

I II III IV V
Local communi�es

Figure 1. Schematic Representation of Potential Linkages between the Additive Partitioning Methods of
b-Diversity and Biodiversity Effects [4,37]. Separating the different effects of diversity is not easy, especially for
communities in the real world [6], because of large variations in species composition and their functionalities under variable
environmental conditions [21]. This figure represents a possible approach to cope with this issue. Each black and white
icon represents a different species. Icons in the same column make up the individual local communities (I–V). Across local
communities, there are dominant species that contribute to the nestedness component of b-diversity. Such species could
play a crucial role in supporting multiple ecosystem functions; they could impose a diversity effect that may be (if not fully)
equivalent to the selection effect by virtue of their competitive dominance. The other issue illustrated here is that species
turnover occurs across communities in a landscape [15], most frequently as a result of environmental variation. Because
different species perform differently under different environmental conditions, they could complement each other in utilizing
available resources, and thus enhance the niche space occupation across locations. Therefore, the complementarity effect
of diversity for multiple functions could be linked to the turnover component of b-diversity at larger spatial scales. Note that,
in reality, dominant species (or functionally important species) can also change across communities [8]; therefore, it is likely
that species turnover does not always contribute to the multifunctional species complementarity and could instead be
associated with species selection, especially at smaller spatial scales. In addition, no formal approach exists to partition the
diversity effects for ecosystem multifunctionality [99]; this diagram considers a multifunctional context and thus may differ
from new partitioning approaches developed for a single functional context (cf [100]).

Table 1. (continued)

Study and region Focal taxa Focal function(s) Approach and dataset Note Refs

soil phosphorus and
potassium), soil carbon
storage, litter decomposition,
invasion resistance

b-Diversity was calculated with
Sørensen’s dissimilarity index. The
averaging and threshold approaches
[9,42] were used to evaluate
diversity–multifunctionality
relationships. The effects of mean
a-diversity and of b-diversity on the
multifunctionality in each of 65 sites
and their interactive effects were
compared across these study sites

communities, likely explaining
why more diverse grasslands
maintained greater
multifunctionality when more
functions and localities were
considered

aNote that there are many possibilities for evaluating relationships among b-diversity, ecosystem functions, and services; some of the possibilities are shown in Figure 1
and the Figures in Boxes 1 and 2.
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functional, or phylogenetic diversity that is caused by anthropogenic influences such as land-
use intensification [31,46,56–59] and climate change [60]. Environmental homogenization is
often responsible for the observed patterns of biotic homogenization through trait filtering and
the resulting dominance by specific combinations of species with a narrow set of selected traits
[31,46,57]. Accordingly, functional homogenization often occurs simultaneously with biotic
homogenization, and can be even more significant for functional characteristics than taxonomic
homogenization [58]. In nature, community assembly processes are influenced by both
deterministic processes (e.g., niche partitioning and species sorting based on competitive
hierarchy) and stochastic processes (e.g., ecological drift, priority effect, and other forms of
historic contingencies), and the relative importance of these processes changes in space and
time [28,29]. Biotic homogenization often results from the elimination of one or several of these
community assembly processes (Box 3). Recent evidence has shown that biotic homogeniza-
tion does not necessarily correspond to a loss of local species richness [31,60]. This underlines
the fact that a sole focus on a-diversity is not sufficient to capture the consequences of human
alterations to ecosystems for their functioning. Detecting biotic homogenization via b-diversity
is important because a loss of functional traits from regional species pools may be hidden
behind the observed patterns of biotic homogenization. This loss could severely threaten
functional diversity [31,46], an important facet of diversity when considering ecosystem
functions [22,61].

Changes in b-diversity [19,62] could thus be a potent indicator of threats on ecosystem
functions and services. In a northern oak savanna, MacDougall et al. [63] demonstrated
how human activities can homogenize environmental conditions and thus the diversity of
ecosystems, leading to the hidden risk of abrupt and potentially irreversible change in the
system after disturbance, despite the fact that it previously appeared to be stable. There is a
growing body of literature on using spatial patterns as early-warning indicators of ecological
regime shifts and critical transitions [64], but b-diversity has not yet been mainstreamed into
these efforts. Scholars have only now started to shed light on possible linkages between
heterogeneous dynamics of ecological communities and ecosystem functions, a theme that
deserves further attention [21]. This is particularly the case when studying biodiversity–eco-
system multifunctionality in natural or close-to-natural ecosystems, which are characterized by
heterogeneity and both deterministic and stochastic processes. A focus on b-diversity may
yield insights into possible alternations of assembly processes (e.g., a shift from neutrality to

Box 2. Community Assembly and Biodiversity–Ecosystem Functioning

Disentangling the mechanisms underlying biodiversity organization (community assembly) and understanding the functional contributions of ecological communities
(biodiversity–ecosystem functioning) are both central issues of community ecology (Figure I). However, these topics have thus far been discussed largely in parallel
rather than together (if not always; e.g., [23]). We illustrate here how these closely associated issues of community ecology can be unified by accounting for different
scales of biodiversity.

Figure I highlights important processes of community assembly operating at different spatial scales. In this system there are many species in a regional species pool.
When a focus is given to a specific landscape, some species may not be observed but the majority of species can still be found. As generally observed in natural
ecosystems [101], the number of individuals is not equally distributed across different species in the meta-community of a landscape; species abundance distribution
is characterized by the dominance of a few species and the rarity of numerous others. Possible reasons for why these rare species can coexist include neutral
processes [102] and other stochastic processes [103], as well as disturbances and the priority effect. In addition, because of a high level of species diversity, the
meta-community is characterized by different suites of species traits, likely suggesting the existence of multiple niche dimensions. This is another important reason for
how different species can coexist and thus local species diversity can be maintained [103]. In Figure I, for example, six traits of soil invertebrate assemblages in a
natural forest [31] are summarized in a 2D spectrum based on kernel density estimation [104]. As a result of a variety of different assembly mechanisms including
stochastic and deterministic processes, b-diversity arises and communities are differentiated among localities, contributing to the maintenance of multiple
ecosystem functions in this landscape (the relationship between b-diversity and landscape-level multifunctionality is outlined in Box 1). Overall, b-diversity can
be an important mediator between community assemblage and functioning, reflecting processes of community organization and determining the provisioning of
multiple ecosystem functions.
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niche-based assembly) and alert to possible consequences for ecosystem functions (e.g., loss
of spatial insurance) (Box 3).

Landscape Complexity and Multifunctionality
The provisioning of multiple ecosystem services depends on the composition and configuration
of landscapes [65,66]. Consequently, if different land-cover types deliver services to varying
degrees, landscape diversification is an intuitive means to foster ecosystem multifunctionality
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Figure I. Schematic Illustration of Key Processes of Community Assembly and Biodiversity–Ecosystem Functioning Operating at Different Spatial
Scales. Each icon represents different species, and those shown in grey outline are lost from the meta-community of a landscape. The number of species in each
local community, and in the landscape containing these communities, constitute a- and g-diversity, respectively. b-Diversity is calculated based on Sørensen index
[33]. To illustrate meta-community structure, the species abundance distribution [101] and kernel density estimation of the trait spectrum [104] are shown. For the
latter, contour lines indicate 0.5 and 0.95 quantiles of the occurrence probability of traits. Spatial variation in local environmental conditions is shown by different
colors (blue, red, green, and yellow) for the background of local communities [I–IV]. Evaluation of individual functions (A–D) is based on the threshold approach [9].
Levels of individual functions are shown with radial bar diagrams (as shown in Figure I in Box 1). Unlike in Figure I in Box 1, multifunctionality is assessed here at a-, b-,
and g-scales [13]; b-MFT50 values are calculated based on Bray–Curtis distance, and the mean value is shown.
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[67]. There is thus an increasing demand for landscape diversification, as well as for identifying
configurations that support multifunctionality [68,69]. The landscape scale is the scale that is
often most relevant for informing policy related to land management. Landscape perspectives
in restoration of biodiversity-based ecosystem services are increasingly gaining attention
[70,71]. There has been a substantial effort to identify how landscape complexity is linked
to biodiversity and ecosystem services [66,72]. Although the importance of b-diversity has not
necessarily been a focus in these efforts, there are several implications for ecosystem func-
tioning following a decline in b-diversity in human-modified landscapes. For instance, there is a
substantial shift in species composition towards the dominance of less-specialized taxa across
localities because of land-use intensification and homogenization, subsequently threatening
functional diversity and ecosystem functions [31,46,50,57]. These studies have – implicitly –

tested a landscape-moderated insurance hypothesis, which expects landscape complexity
and heterogeneity to foster biodiversity, and consequently to support stability of ecosystem
processes and provide insurance against changing environments [66]. However, a serious
knowledge gap still exists regarding the contributions of b-diversity in supporting multifunc-
tional landscapes.

In principle, b-diversity can be calculated at any spatial scale [34]. In the context of landscape
diversification, however, a coarse scale of b-diversity is important (e.g., the diversity between
stands and patches in a forest landscape). This is because providing multiple ecosystem
services often requires patches in different successional stages or different types of land cover,

Box 3. Anthropogenic Impacts on the Processes of Community Assembly and Their Potential Consequences on Biodiversity–Ecosystem
Functioning

Figure I illustrates possible alterations of key processes underpinning community assembly and biodiversity–functioning relationships. In this example of biotic
homogenization [b-diversity declines from 0.83 (Figure I in Box 1) to 0.29 (Figure I of this box), despite no change in a-diversity], some species are filtered by strong
anthropogenic influences (e.g., land-use intensification) [31,46,57,59]. Note that this anthropogenic filter is exemplified here at the landscape level; however, such
filtering can occur at any spatial scale. As a result, species that occur in the landscape are a small subset of those originally found in the region. Strong anthropogenic
filtering deterministically selects species and thus may weaken important processes, most likely including neutrality and historic contingency. Species abundance
distribution could change relative to that observed before human influences were intensified. In this example, the species abundance distribution is characterized by a
log-normal distribution that tends to lack rare species (for instance, compared to those showing a log-series distribution [101]). Species lost tend to be rare and may
be an endemic or a large-sized species, a frequently observed pattern of biotic homogenization [18]. Furthermore, strong filtering only allows species with specific
traits (e.g., cosmopolitan species with high environmental tolerances) to exist in the landscape [57], affecting functional characteristics more than taxonomic
characteristics of local communities [58]. Such selection could potentially affect the trait spectrum in many ways. Possibilities include a reduction of trait hypervolume
in terms of size (volume) and complexity (dimension). In Figure I a trait spectrum was constructed using the dataset of Figure I in Box 2, but instead of using community
data from a natural forest, communities homogenized by forest conversion were used to estimate the kernel density of the trait distribution; consequently, traits are
more aggregated within a 2D plain (compared to those in Figure I Box 2). Such alternations of trait spectra may have large consequences for ecosystem functions.

Two important mechanisms underlying positive diversity effects on functions are the selection and complementarity effects [4]. If the aggregate of niche occupation
(in terms of the absolute unit, not based on the relative unit) is reduced because of the reduction of trait space, ecosystem properties that emerge as a community-
level aggregate of resource use could become weak; that is, even if a niche is effectively partitioned among species (niche complementarity), niche space itself is small
enough to adversely affect overall functionality. This may also be the case for the selection effect; the maximum amount of resources that can be utilized by the
dominant species could be limited, or important species that drive the selection effect have been already lost. Such weakening in local community characteristics
(illustrated as ‘negative effects’ on MFT50 in Figure I) may provide an explanation for the important notion that the number of species is not necessarily a strong
predictor of ecosystem function (e.g., [105]) (for instance, in the present explanation, a-diversity is kept constant at 4 in both Figure I of Box 2 and Figure I in this box).
In this example, ecosystem multifunctionality at both the local and landscape scales is threatened (loss of the local and spatial insurance effect of diversity). These and
other changes triggered by human influences could be assessed based on simultaneously focusing on different scales of biodiversity and ecosystem functioning
relationships.

In Figure I a reduction in g-diversity leads to a decline in b-diversity (i.e., sampling effect [48]). However, loss of b-diversity can occur in a variety of ways. A threat to
b-diversity can even be masked by a simultaneous increase in a-diversity [46]. Our explanation is aimed at explicitly describing the importance of different scales of
biodiversity with a particular focus on b-diversity, which has been considered in the context of understanding the processes of community organization [28,29,106]
but has so far been widely disregarded with regard to its possible linkages with ecosystem functions [11]. Many tools and approaches, including simulation [24],
theoretical [20], and empirical studies [25,55], are now available to carefully assess these interactive processes and the large-scale influences of environmental
changes on small-scale outcomes of ecosystem functions and services.

558 Trends in Ecology & Evolution, July 2018, Vol. 33, No. 7



acknowledging that broad and diverse areas of land are able to provide different services.
Tylianakis et al. [73] showed for bee and wasp communities that, although a-diversity was
higher in intensively used agroecosystems, b-diversity was higher in less intensively used
agroecosystems owing to greater habitat heterogeneity and associated community dissimi-
larity contributing to g-diversity. Lamy et al. [65] recently showed that both landscape configu-
ration and composition influence the provisioning of ecosystem services, and that different
bundles of services are associated with specific configurations and compositions on the
landscape. Combining such evidence for landscape effects on biodiversity and ecosystem
services has profound potential not only in the context of co-benefits (e.g., reducing emissions
from deforestation and forest degradation, REDD+) but also for the functional roles of b-diver-
sity in supporting ecosystem services. Importantly, Winfree et al. [74] recently showed the
importance of bee b-diversity on pollination services at landscape-scale. A related issue is the
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Figure I. Schematic Illustration of Key Processes of Community Assembly and Biodiversity–Ecosystem Functioning, as Altered by Anthropogenic
Influences (indicated as the blue-shaded filter). Environmental conditions (shown by the light-blue background) and species composition (icons) in local
communities (I–IV) are similar in functional traits to some extent (because of human-induced environmental homogenization). Explanations of the icons, inset displays,
diversity indices, and multifunctionality indices are given in Figure I in Box 2. For species abundance distribution, a possible change is illustrated [there is a shift from
the grey dotted curve (shown in Figure I in Box 2) to the black solid curve]. For kernel density estimation of traits, the same dataset [31] as Figure I in Box 2 is used but,
instead of those in a natural forest, those homogenized because of forest conversion are shown here (0.95 quantiles of occurrence probability in Figure I in Box 2 is
shown with a grey dotted line).
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scale-dependency of ecosystem services and their possible mismatches across scales [72].
Uncertainties exist for how accumulating local-scale evidence of positive biodiversity effects on
ecosystem functioning can be scaled up to large scales at which policy can be informed [1]. In
this regard, focusing on the variation of biodiversity in space and time is relevant for exploring
potential schemes to secure ecosystem service provisioning in heterogeneous landscapes.

Heterogeneous Dynamics of Communities and Ecosystem Functions
History and Disturbance
Another issue is the effect of history and disturbance on biodiversity and ecosystem functioning
because these factors are inherent, fundamental, and ubiquitous in nature. Disturbance often
leaves long-term imprints on ecological properties such as species composition and function-
ing [75–77]. Disturbance legacies contribute to ecological integrity by virtue of carrying over
important characteristics into the post-disturbance state, facilitating succession and the
regeneration of biota [78]. Unlike anthropogenic disturbances, which often cause abiotic
and biotic homogenization and a loss of b-diversity, natural disturbances often increase
b-diversity, partly because they are often patchy, complex in shape, and variable in severity.
Consequently, while human disturbances often lead to detrimental effects on ecosystem
functioning, natural disturbances create niches for many taxa including rare and specialized
species and prevent competitive exclusion, ultimately fostering the maintenance of biological
diversity, as well as biodiversity-dependent ecosystem functioning.

While deterministic processes including niche theory have helped experimental and theoretical
studies to explore the underlying mechanisms of biodiversity–ecosystem functioning [79,80],
stochastic processes such as disturbance, historic contingency, and ecological drift have
received considerably less attention. The latter processes could, however, be the reasons why
many communities are diverse in terms of composition [81] and functioning [82,83]. At this
juncture, a further focus on disturbances is of paramount importance. As a consequence of the
spatial and temporal variability in disturbance regimes, species composition can diverge
strongly between localities. Although the classical conception of disturbance assumed that
ecosystem development was reset completely, more recent insights assert that ecosystems
can indeed be diverse from the very beginning of their development [84]. Disturbance history
therefore matters for the subsequent stages of ecological development, and disturbances of
different severity and frequency can lead to complex structural and compositional patterns [85].
Recent advances in community ecology highlight that even subtle differences in community
characteristics, such as the order of arrival of species after a high-severity disturbance (priority
effect), can have long-lasting effects on species composition and ecosystem functions [82,83].
Because species assemblages are inherently prone to a variety of environmental perturbations,
it is necessary to focus on the causes of biodiversity under given environmental conditions (i.e.,
assembly processes), in addition to its consequences for ecological properties (i.e., ecosystem
functioning). It is thus worthwhile to further focus on b-diversity as the link between processes
of community assembly and diversity–functioning relationships (also see Box 2).

Climate change could alter disturbance regimes in many regions [86]. A likely consequence of
such changes in disturbance regimes is that the structure and functioning of ecological systems
will also change, and could even lead to novel ecosystems under a changing climate [87].
Changes in disturbance regimes remain uncertain, and the short-term, direct influences on the
provision of ecosystem services are complex and sometimes detrimental [77]. At the same
time, disturbances could contribute to heterogeneity and diversification of future ecosystems at
large scales. Recent works have shown that disturbances can act as an important mediator for
ecosystems to autonomously adapt to changing environmental conditions [24,88]. More
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specifically, these studies found that disturbances contribute to the enhancement and rapid
recovery of biodiversity at different scales [24,88], which subsequently supports ecosystem
functioning [24]. Disturbances can also provide opportunities for species to respond to climate
change [89], for example if disturbances help them to spread into new areas at the leading edge
of their current range [90]. Summing up, unlike anthropogenic drivers such as nitrogen
deposition, which directly enhances ecosystem function (e.g., productivity) in the short term
but can indirectly deteriorate it in the long term (through the decline of biodiversity [91]), natural
disturbances support ecosystem functioning through their positive influences on local and
regional biodiversity.

Non-Equilibrium and Alternative States
Ecological communities are always dynamic and vary in space and time. They often develop
along relatively predictable successional trajectories, but can also abruptly change to alterna-
tive states. There is a large body of theory and terminology for describing this dynamic nature of
communities, including alternative stable states [92], alternative transient states [81], dynamic
equilibrium [88], and non-equilibrium dynamics [75,76]. An in-depth analysis of these concepts
is beyond the scope of this contribution, but we suggest that spatial variation at the landscape
scale is a key element in understanding this dynamic behavior of ecosystems. Considering the
increasing importance of variability in ecological systems, particularly in the context of global
change [93], research should give further attention to spatial heterogeneity and temporal
variabilities in terms of the structure, composition (including taxonomic, functional, and phylo-
genetic characteristics), and functioning of ecosystems.

Concluding Remarks
The objective of this commentary is to call for an expansion of our perspectives on the roles of
biodiversity in supporting humanity. This call is motivated by the observation that, hitherto,
studies on biodiversity–ecosystem functioning have not yet sufficiently considered the dynamic
nature of ecosystems, or the spatiotemporal diversity arising from it. This b-diversity has large
potential to be a cornerstone of biodiversity research, improving our understanding of the
causes (through the processes of community assembly) and consequences (for ecosystem
functioning) of biodiversity change (Box 2). Such an improved understanding of biodiversity–
ecosystem functioning relationships is essential to ensure the sustained supply of multiple
societal benefits of ecosystems [1] (see Outstanding Questions).

Linking the causes and consequences of biodiversity changes is not easy [6,94] because
ecological communities are dynamic and complex [95]. This is especially true under mounting
anthropogenic impacts. In addition to the further need for fundamental ecological research, we
note that the perspectives highlighted in this commentary are currently not sufficiently incor-
porated into practical frameworks of biodiversity conservation and management. We thus
encourage advancing knowledge in this area to allow ongoing assessment bodies, such as the
Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), to
better assess the status of biodiversity and ecosystem services. Because variability and change
are all ubiquitous in socioecological systems, acknowledging such inherent properties of nature
is an essential step in making scientific knowledge practically applicable.
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simultaneously focused?
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scale changes in the provisioning of
multiple ecosystem services?
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