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Summary

Understanding the context dependence of ecosystem responses to global changes requires the

development of new conceptual frameworks. Here we propose a framework for considering

how tree species and their mycorrhizal associates differentially couple carbon (C) and nutrient

cycles in temperate forests. Given that tree species predominantly associatewith a single type of

mycorrhizal fungi (arbuscularmycorrhizal (AM) fungi or ectomycorrhizal (ECM) fungi), and that

the two types of fungi differ in their modes of nutrient acquisition, we hypothesize that the

abundance of AM and ECM trees in a plot, stand, or region may provide an integrated index of

biogeochemical transformations relevant to C cycling and nutrient retention. First, we describe

how forest plots dominated by AM tree species have nutrient economies that differ in their C–

nutrient couplings from those in plots dominated by ECM trees. Secondly, we demonstrate how

the relative abundance of AM and ECM trees can be used to estimate nutrient dynamics across

the landscape. Finally, we describe how our framework can be used to generate testable

hypotheses about forest responses to global change factors, and how these dynamics can be

used to develop better representations of plant–soil feedbacks and nutrient constraints on

productivity in ecosystem and earth system models.

Introduction

A grand challenge in ecosystem science is to develop broadly
applicable but mechanistically rigorous conceptual frameworks
that can be used to test hypotheses about ecosystem functioning,
particularly in the wake of global change (Chapin et al., 2002).
In forests, such frameworks have proved useful for studying
ecosystem-scale responses to disturbance (Odum, 1969;
Vitousek & Reiners, 1975) and nitrogen (N) deposition (Aber
et al., 1989). Notably absent from these frameworks is consid-
eration of how differences in forest composition (i.e. tree species
and their associated microbes) influence biogeochemical pro-
cesses. Over the past several decades there has been increasing
recognition that much of the biogeochemical variation that
occurs within and among forests can be attributed to tree species
differences in growth rates, nutrient acquisition strategies and
interactions with soil microbes (Pastor et al., 1984; Finzi et al.
1998a; Finzi et al., 1998b; Lovett et al., 2004; Reich et al.,

2005). This poses a challenge for developing a framework that
considers forest composition, as it is impractical to consider
species-specific impacts in highly diverse communities.

Currently the most common way to group tree species is by leaf
habit and phylogeny (e.g. evergreen gymnosperms, deciduous
angiosperms, etc.). Broadleaf and needleleaf trees generally differ in
leaf traits such as photosynthetic rates (Reich et al., 1997) and
nutrient content (Reich & Oleksyn, 2004). While it is well-
established that such differences contribute to variation in (C) and
nutrient use in forests dominated by these species (Reich et al.,
1997; Wright et al., 2004), trait variation among taxa within these
groups can be appreciable (Hobbie et al., 2007; Mueller et al.,
2012). Moreover, belowground traits are rarely considered in
conceptual frameworks despite their importance in coupling C-
nutrient cycles (Frank & Groffman, 2009) and mediating
ecosystem responses to global change (Pendall et al., 2004). Hence,
an improved framework for considering tree species effects in
ecosystems should group species by an integrated suite of
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aboveground and belowground traits that are functionally impor-
tant and conserved across diverse ecosystems.

Here we propose a new conceptual framework to predict how
tree species differences in aboveground and belowground traits
influence key biogeochemical processes in temperate forests. It is
well-established that differences between arbuscular mycorrhizal
(AM) and ectomycorrhizal (ECM) plants contribute to and reflect
biogeochemical variation in ecosystems (Read & Perez-Moreno,
2003). However, these comparisons are often made across biomes
and latitudinal gradients (Smith & Read, 2008). In temperate
forests, nearly all tree species associate with either AM or ECM
fungi. Given that trees from the twomycorrhizal associations differ
in multiple aboveground and belowground traits and processes
(Cornelissen et al., 2001; Comas & Eissenstat, 2004; Phillips &
Fahey, 2006; Comas & Eissenstat, 2009), we speculate that forests
dominatedbyAM- andECM-associated trees have uniquenutrient
economies and may respond to global changes in predictable ways.
The objectives of this paper are (1) to describe how AM and ECM
trees differ in their effects on C and nutrient couplings; (2) to
propose a mycorrhizal-associated nutrient economy framework
that can be used to generate testable hypotheses about biogeo-
chemical consequences of tree species gains and losses; and (3) to
identify how this framework can be used to improve our
understanding of forest ecosystem responses to global change.

Mycorrhizal associations and nutrient dynamics

Arbuscular mycorrhizal fungi are a monophyletic, species-poor
group of fungi which associate obligately with c. 80% of all land
plants –most of which are grasses (Smith & Read, 2008). While it
is well-known that these fungi enhance plant phosphorus (P)
acquisition by extending hyphae beyond the nutrient depletion
zones around roots, their role in acquiringN – the primary limiting
nutrient in most temperate ecosystems – has only recently been
recognized (Fellbaum et al., 2012). AM hyphae rapidly colonize
soil patches rich in organic N (Hodge et al., 2001; Hodge & Fitter,
2010) and take up and transport both inorganic (Govindarajulu
et al., 2005) and organic N forms (Whiteside et al., 2012). Given
that most AM fungi have limited saprotrophic abilities and
inorganicN forms are relativelymobile in soils whereAMplants are
dominant, it is believed that these plants primarily utilize inorganic
N forms (Smith & Smith, 2011).

In contrast to AM fungi, ECM fungi are a diverse group of fungi
from multiple phylogenetic groups – nearly all of which associate
with trees (Smith&Read, 2008). These facultative plant associates
form a thickmantle around root tips fromwhich clusters of hyphae
(mycelium) extend beyond the root zone (e.g. as rhizomorphs) and
turn over slowly relative to AM hyphae (e.g. months to years;
Anderson & Cairney, 2007). ECM fungi are thus believed to
represent a greater C cost to the plant than AM fungi (Smith &
Read, 2008), a cost that is likely offset by the ability of these fungi to
access nutrient pools that are inaccessible to AM fungi. ECM fungi
produce hydrolytic and oxidative extracellular enzymes to degrade
soil organic matter (SOM) which enable these fungi to mine soils
for N-bearing compounds such as chitin, proteins and phenol–
protein complexes (Chalot & Brun, 1998; Courty et al., 2010) as

well as P-bearing inositol phosphates (Turner, 2008). The uptake
of organic N by ECM plants is consequential, as there is a reduced
assimilatory cost in taking up amino acids relative to inorganic N
(Allen et al., 2003). Additionally, ECM fungi – but not AM fungi –
can weather minerals by releasing low-molecular-weight organic
chelators and hydrogen ions to increase P and calcium availability
(van Breemen et al., 2000; Blum et al., 2002; Taylor et al., 2009).

The variable nutrient acquisition strategies in AM and ECM
plants reflect the different decomposition rates of AM and ECM
leaf litters. AM plants – which scavenge for nutrients released by
saprotrophic microbes – generally have leaf litter that decomposes
rapidly whereas ECM fungi – which can mine nutrients from
organicmatter and are less dependent on saprotrophicmicrobes for
nutrient release – generally have slow-decomposing litter (Read &
Perez-Moreno, 2003). While such patterns have been commonly
observed among plants across latitudinal gradients, only a handful
of studies have investigated these dynamics for plants of the same
life form that co-occur in a given ecosystem.

Several recent experiments conducted in common gardens
suggest that AM and ECM trees from temperate forests follow
similar patterns. Cornelissen et al. (2001) reported that leaf litter
fromAM trees (n = 26) decomposed twice as fast in a common plot
as litter fromECMtrees (n = 11). In a 32-yr-old common garden in
Poland, AM leaf litter (n = 2) decomposed 51% faster in a common
plot than ECM leaf litter (n = 6; Hobbie et al., 2006), and the
average decomposition rate of all litter types (i.e. both AM and
ECM) was 150–190% greater in the two AM stands relative to the
six ECM stands. Faster rates of AM litter decomposition may
influence SOM dynamics, as soil C pools have been reported to
turnover faster in AM stands (n = 2) relative to ECM stands (n = 4)
in a 30-yr-old commongarden inDenmark (Vesterdal et al., 2012).
Collectively, these studies suggest that in addition to being a good
predictor of leaf litter decomposition rates, the mycorrhizal
association of a given tree species may influence C and nutrient
availability in temperate forests.

The degree to which litter decomposition differences contribute
to biogeochemical differences in AM- andECM-dominated forests
is currently unknown. One reason for this knowledge gap is that
AM tree species are often reported to be largely restricted to the
forest understory or early stages of succession (Langley&Hungate,
2003; Read & Perez-Moreno, 2003; Chapman et al., 2006).
However, this assumption is not supported by known AM tree
species distributions. Sugar maple (Acer saccharum Marsh) is a
shade-tolerant canopy dominant tree in mature hardwood and
mixedmesophytic forests (Burns&Honkala, 1990). Co-dominant
trees in these forests include other AM trees such as redmaple (Acer
rubrum L.), American elm (Ulmus Americana L.) and white ash
(Fraxinus Americana L.). Tulip poplar (Liriondedron tulipifera),
black cherry (Prunus serotina), sycamore (Platanus occidentalis L.)
and black walnut (Juglans nigra L.) – although less shade-tolerant
than maples and ashes – are some of the most abundant trees (in
terms of basal area) in forests across the USA (Burns & Honkala,
1990).

We used the spatially extensive forest inventory analysis (FIA)
data (maintained by the US Forest Service) and previously
described mycorrhizal designations (Table S1; Brundrett et al.,
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1990; Wang & Qiu, 2006) to examine the relative abundance of
AM and ECM trees across the eastern and midwestern US. We
calculated the relative basal area of AM and ECM trees for 21 000
individual plots consisting of over 100 000 trees, excluding plots
that were planted or only partially forested (< 37% of the total; see
Methods S1). For the few taxa reported to associate with both AM
or ECM fungi, we assigned an equal percentage of the species basal
area to eachmycorrhizal group. In northeastern forests (e.g.Maine,
Massachusetts, New York, New Jersey and Vermont), AM and
ECM trees comprise 41% and 59% of the basal area respectively,
with angiosperms comprising under half of the ECM trees but the
vast majority of AM trees (Fig. 1). In Midwestern forests (e.g.
Kentucky, Illinois, Indiana, Ohio and Wisconsin), AM and ECM
trees are evenly distributed across the region and are mostly
angiosperms. In Southeastern forests (e.g. Georgia, North Caro-
lina, South Carolina and Virginia), AM and ECM trees comprise
37% and 63% of the basal area respectively, and just over half the
ECM trees (and nearly all of the AM trees) are angiosperms.
Collectively, our analysis shows a remarkably even distribution of
AM and ECM trees across broad regions of the US and challenges
previous assumptions about the abundance of AM trees in
temperate forests. To the extent that plots dominated by AM and
ECM trees differ in their biogeochemical attributes, a framework
based on mycorrhizal associations may lead to improved predic-
tions of nutrient dynamics across the temperate region.

The mycorrhizal-associated nutrient economy
(MANE) framework

We sought to test the hypothesis that AM and ECM-domainted
plots have unique biogeochemical syndromes in mature forests in
the central hardwood region of the U.S. We established
20 m9 20 m plots in IndianaUniversity’sMoores Creek Research
and Teaching Preserve – a c. 80-yr-old forest in south-central
Indiana. In all plots, trees from the dominant mycorrhizal type
(AM vs ECM) contained > 75% of the basal area of the plot (n = 7
replicates for each mycorrhizal group; Supporting Information
Methods S1). AM plots contained a mixture of sugar maple, tulip
poplar and sassafras (Sassafras albidum) while ECMplots contained
white oak (Quercus alba L.), northern red oak (Quercus rubra L.),
American beech (Fagus grandifolia Ehrh.), pignut hickory (Carya

glabra P. Mill.) and black oak (Quercus velutina Lam.). All plots
were located in similar landscape positions and soils derived from
the same parent material (silty-loams derived from sandstone and
shale), and containedmore than one species from eachmycorrhizal
group (Methods S1).

We found clear differences in rates ofC,NandP cycling between
AM-dominated and ECM-dominated plots (Table 1). Across all
plots, leaf litter fromAMspecies decomposed 80% faster than litter
from ECM species (P = 0.0002), consistent with the results of the
previously described common garden experiments. The slower
rates of litter turnover in the ECM plots likely contributed to the
development of a thick organic horizon and greater soil acidity at
the surface (P = 0.003; Table 1). Further, the concentration of
dissolved organic C and the ratio of organic N to inorganic N were
both greater in ECM-dominated plots than in AM-dominated
plots (Table 1), likely reflecting the presence of an organic horizon
in ECMplots. Although there were no significant differences in net
N mineralization rates between AM- and ECM-dominated plots
(P = 0.64), the concentration of ammonium was greater in AM-
dominated plots – a process which was likely promoted greater
nitrification rates in these plots (P = 0.002; Table 1). Additionally,
two important indices of organic N and P cycling differed. The
activity of NAGase (N-acetyl-b-D-glucosaminidase) – an enzyme
involved in N acquisition from the organic N form, chitin – was
two-fold greater in ECM plots (P = 0.033). Phosphatase enzyme
activity – an index of P release from SOM – was 62% greater in
ECM-dominated plots indicating enhanced mining of organic-
bound P (Table 1). In general, differences between AM and ECM
plots declined with depth such that few of the measured variables
were significantly different 15 cm below the surface (data not
shown).

Collectively, the results fromMoores Creek suggest that distinct
trait-integrated biogeochemical syndromes in AM and ECM
stands may exist as a result of differences in their ‘nutrient
economies’ (i.e. the primary forms of nutrients utilized by plants
and microbes). We refer to this framework as the Mycorrhizal-
Associated Nutrient Economy (hereafter the MANE framework;
Fig. 2), and speculate that this framework provides a useful way to
characterize the biogeochemical attributes of AM- and ECM-
dominated temperate forests. TheMANE framework predicts that,
in soils where AM trees are dominant, an ‘inorganic’ nutrient

Table 1 Arbuscular mycorrhizal (AM)- and
ectomycorrhizal (ECM)-dominated soils at
Moore’s Creek, IN, USA (for methods and site
description, please see Supporting
Information Methods S1)

AM ECM P value

Leaf litter
Decomposition rate (% mass loss) 17.7 (2.8) 9.8 (1.6) 0.0002

C cycling
Extractable DOC (mg organic C g�1 soil) 0.32 (0.04) 0.64 (0.06) 0.0007

N cycling
Organic N : inorganic N 159 (28) 277 (50) 0.0768
NAGase enzyme activity (lmol h�1 g�1) 0.006 (0.0004) 0.014 (0.003) 0.0328
Nitrification (lg NO3� N g�1 soil d�1) 1.05 (0.21) < 0.001 0.0023

P cycling
Phosphatase enzyme activity (lmol h�1 g�1) 0.034 (0.004) 0.055 (0.004) 0.0009

Other variables
Soil pH 5.23 (0.24) 4.27 (0.09) 0.0027
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economy occurs (Fig. 2a). The inorganic nutrient economy results
from rapid rates of C mineralization owing to the high chemical
quality of AM leaf litter (Cornelissen et al., 2001), root exudates
(Smith, 1976) and mycorrhizal litter (Staddon et al., 2003; Drigo
et al., 2010). As a consequence, N is rapidly transformed from
organic forms (e.g. proteins, chitin and amino acids) to inorganic
forms (ammonium and nitrate) by a microbial community
dominated by free-living bacteria and fungi. Nitrification is likely
promoted by the amelioration of soil acidity by AM litter (Finzi
et al., 1998a) and increases in the ammonium pool owing to the
rapid decomposition of the AM litter. In the AM nutrient
economy, inorganic N is the dominant source of N available to
plants and the dominant form of N lost through leaching. The
primary role of the AM fungal hyphae is to scavenge for inorganic
nutrients released from litter and SOM by saprotrophic microbes.

The MANE framework predicts that in forests where ECM
trees are dominant, an ‘organic’ nutrient economy will occur
(Fig. 2b). We speculate that the slow decomposition of litter in
these soils results in a greater accumulation of SOM, such that a
significant fraction of nutrients exist in organic forms (Table 1).
Thus, a large proportion of C allocated belowground is used by
ECM fungi to acquire N and P from SOM. ECM hyphae have
greater enzymatic capabilities relative to AM hyphae (Olsson
et al., 2002; Read & Perez-Moreno, 2003) and thus, ECM-
associated plants can access some forms of organic N and P
directly. Because of the conservative cycling of N through this
pathway and the acidifying nature of most ECM tree species’
litter (Finzi et al., 1998a; Reich et al., 2005), little N becomes
available for ammonium oxidizers, and nitrification rates and
nitrate leaching losses are low. The large pool size of the
dissolved organic N pool and low soil pH select for a fungal-
dominated microbial community (including ECM fungi), and
the turnover of organic N forms controls N availability to plants
and microbes. ECM fungi influence these dynamics by
producing proteases and chitinases that hydrolyse N in SOM
and in microbial necromass (Fernandez & Koide, 2012). In
addition, the ECM fungi produce phosphatase enzymes and
release low-molecular-weight organic acids, which are used to
increase P availability (Jansa et al., 2011). The resulting phos-
phate esters, including the inositol phosphates and phosphate
ions are then acquired by fungi and roots (Antibus et al., 1997;
Turner, 2008). The N and P acquired by roots and fungi are
released to soil in the form of slowly decomposing ECM litter.
Thus, we speculate that the organic nutrient economy of the
ECM-dominated forest is driven primarily by a tight coupling of
plant C allocation and nutrient uptake.

Taken together, the MANE framework predicts that an
inorganic nutrient economy occurs in AM-dominated stands
owing to rapid mineralization of plant-derived C and nutrients,
whereas an organic nutrient economy occurs in ECM-dominated
stands owing to the slow turnover of plant-derived C and enhanced
root/rhizosphere couplings. Given that most forests include
mixtures of AM and ECM trees (Fig. 1), the utility of this frame-
work depends on whether the relative abundance of AM or ECM
trees in a plot or stand reflect gradients in the nutrient economy. To
test this, we randomly located 30 plots (15 m9 15 m) in a mixed
hardwood forest located at the Griffy Woods Research and
Teaching Preserve in south central Indiana (Methods S1). For each
plot, we calculated the relative abundance of AM and ECM trees
based on basal area. Most trees in Griffy Woods are 70–80 yr old,
and the site contains a rich assemblage of both AM and ECM tree
species. Dominant AM tree species include sugar maple, tulip
poplar, white ash, black walnut, black cherry and sassafras, while
dominant ECM trees include northern red oak, black oak,
American beech, shagbark hickory (Carya ovata P. Mill.), white
oak and bitternut hickory (Carya cordiformisWangenh.). Similar to
MooresCreek,GriffyWoods is also on the unglaciated plateau, and
has soils consisting of silty-loams derived from sandstone, shale
and, to a lesser extent, limestone.

Similar to Moores Creek, multiple indices of C and nutrient
cycling differed between AM- and ECM-dominated plots, and
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Fig. 1 Plot of the distribution of arbuscular mycorrhizal (AM) and ectomy
corrhizal (ECM) trees in forests across the eastern (a), midwestern (b), and
(c) southeastern USA. For each plot, the relative abundance of trees from
each mycorrhizal group (based on basal area) was summed and the plots
were sorted based on the percentage of ECM trees (left to right, lowest to
highest). Numbers in the legend refer to the mean percentage of
angiosperms (A) and gymnosperms (G) within each mycorrhizal group
across the 5017 (northeast), 7469 (midwest) and 9189 (southeast) plots.
All data used in this analysis were collected from the forest inventory
analysis (FIA) data repository.
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such differences tracked the shifts in the relative abundance of
AM and ECM trees (i.e. resulting in a nutrient economy
gradient). Here we present a subset of these data for key aspects of
the nutrient economy. First, the ratio of organic N to inorganic N
in the upper surface soil was highly correlated with the percentage
of ECM trees at the plot-scale (Fig. 3a; see Methods S1 for
methods). Organic forms of N increased in importance as ECM
trees increased in abundance across the landscape. Nitrification
rates followed the opposite pattern: plots with increasing amounts
of AM trees had greater rates of nitrification whereas plots with
increasing abundance of ECM trees had little if any net
nitrification (Fig. 3b). Nitrification is a critical ecosystem process
that governs N loss in forest ecosystems, and differences across the
gradient suggest that N losses may be greater as the percentage of
AM trees increases. Elevated nitrification and nitrate leaching,
while often attributed to individual tree species such AM sugar
maple (Finzi et al., 1998b; Lovett et al., 2002; Templer et al.,
2005) have rarely been related to functional groups of trees. We
found no significant relationship between the percentage of sugar
maple in our plots and nitrification rates (r2 = 0.27; P = 0.19). In
fact, some of the highest nitrification rates occurred in plots
where sugar maple comprised < 5% of the basal area of the plot.
This indicates that our results cannot be attributed to a single
species. Rather, nitrification appears to be governed by a suite of
factors, which relate to the traits of the dominant species (e.g.
nutrient use efficiency and litter chemistry) and their interaction
with the broader nutrient economy (Pastor et al., 1984). As a
consequence, tree species from different mycorrhizal groups, a are
likely contributing to these spatially distinct biogeochemical
patterns.

TheMANE framework as a lens for considering global
change impacts

Given predicted changes in forest composition owing to invasive
insects (Twery & Patterson, 1984), altered disturbance regimes
(Abrams, 1992) and climate (Iverson & Prasad, 1998; Iverson
et al., 2004), the MANE framework provides a conceptual
framework for considering the impacts of tree species gains and
losses. Tulip poplar, red maple and sugar maple – all AM species –
are becoming increasingly dominant in hardwood forests due the
poor regeneration and selective harvesting of ECM oak species
(Woodall et al., 2011; Lister et al., 2012). To the extent that the
increased abundance of AM trees promotes a more inorganic
nutrient economy, the biogeochemical attributes of these forests
will also change (e.g. faster rates of C and N cycling; greater nitrate
leaching losses, etc.). Likewise, the biogeochemical consequence of
tree species declines owing to invasive insects may depend on the
mycorrhizal association of the replacement trees.White ash (anAM
tree species) is currently in decline across much of the central
hardwood region as a consequence of the emerald ash borer. If ash
trees are replaced by other AM species, nitrate leaching losses may
continue to be high. If, on the other hand, ashes are replaced by
ECM species, nitrate leaching losses may be reduced. Thus, the
MANE framework can provide a lens for developing testable
hypotheses about the biogeochemical consequences of shifts in
forest composition.

Additionally, there is accumulating evidence that AM and ECM
forests may respond differently to global change drivers. Here we
describe several examples of how differences in the nutrient
economies of AM and ECM-dominated forests may impact how
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Fig. 2 Conceptual model of the nutrient economies of arbuscular mycorrhizal (AM)- and ectomycorrhizal (ECM)-dominated stands of the Mycorrhizal-
AssociatedNutrient Economy (MANE) framework for temperate forests. In AM-dominated stands (a), an inorganic nutrient economy is predicted as a result of
the fast decomposition of high-quality litter pools and elevated rates of carbon (C) and nitrogen (N) mineralization. In ECM-dominated stands (b), an organic
nutrient economy is predicted as a result of low-quality litter pools and slow rates of C andN turnover, resulting in limited losses of inorganic nutrients.Within a
mycorrhizal group, the size of the boxes and arrows indicates relative importance of pools and fluxes, respectively. The phosphorus cycle (not depicted here) is
hypothesized tohave an inorganic nutrient economy (AM)mediatedby litter decomposition andanorganic nutrient economy (ECM)drivenbya tight coupling
between root C allocation and nutrient uptake. Blue arrows, C fluxes; red arrows, N fluxes.
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these forests respond to global changes. Although factors such as
soil type and land use history may also mediate ecosystem
responses, we present several recent studies that support the
MANE framework as a useful construct for predicting the
magnitude and direction of forest responses.

Effects of N deposition

Temperate forests receive some of the highest rates of N deposition
on earth (Holland et al., 1999; Galloway &Cowling, 2002; Elliott
et al., 2007). To date, most N deposition studies in temperate
forests have been conducted in ECM-dominated forests, especially
in Pinus-dominated stands (LeBauer & Treseder, 2008; Lu et al.,
2011; Templer et al., 2012). These studies have reported increases,
decreases and no effects of N on net primary productivity (NPP)
(Magill et al., 2004; McNeil et al., 2007; Wallace et al., 2007).
Interestingly,manyN-enrichment studies conducted inAMforests
have shown positive NPP responses (Boggs et al., 2005; McNeil
et al., 2007; Pregitzer et al., 2008b). Adifferential response between
AM and ECM trees to N deposition was also reported by Thomas
et al. (2010) who examined the species-specific responses of tree
species to N deposition for tens of thousands of trees in the FIA

database. All five of the tree species which showed increased growth
in response toNwere AM tree species whereas ECM trees exhibited
more variable responses (i.e. some increased, some decreased, and
some were unaffected).

Differences in the responses of AM and ECM trees to N
enrichment may relate to their nutrient economies. AM trees
generally occur in soils with low organic N to inorganic N ratios.
Accordingly, the positive response of AM trees to N enrichment
may be driven by the extent to which these trees are adapted to
exploit pulsed supplies of inorganic N (Veresoglou et al., 2012).
ECM trees, in contrast, may respond differently from AM trees,
especially if the N deposition is in the form of nitrate – a form of N
which is generally not produced in ECM-dominated forests
(Vitousek et al., 1982).

Additionally, soil processes in AM and ECM stands may
respond differently to N enrichment. Waldrop et al. (2004)
reported that N deposition increased decomposition in AM-
dominated forests but decreased decomposition in ECM-dom-
inated forests. These effects were attributed to differences in soil
microbial communities, particularly the presence of N-sensitive
white-rot fungi that decompose recalcitrant SOM commonly
found in ECM-dominated stands (Fog, 1988; Carreiro et al.,
2000; Frey et al., 2004). Differences in nutrient economies also
appear to drive the magnitude and the direction of the response
of nitrate leaching to N deposition. In a recent meta-analysis,
mycorrhizal association was found to be the most important
biological factor predicting the response of nitrate leaching to
experimental N deposition (M. G. Midgley and R. P. Phillips,
unpublished). N deposition induced higher nitrate leaching in
AM-dominated stands than in ECM-dominated stands. Greater
nitrate leaching losses in the AM stands likely reflect their
inorganic nutrient economy, with N deposition leading to more
nitrate produced but also more nitrate lost (Goodale et al., 2002;
Lovett et al., 2002). Whether faster decomposition and greater
nitrate leaching in AM stands will eventually minimize the
growth-enhancing effects of N deposition on AM tree growth
warrants further study.

Elevated CO2 and nitrogen limitation

The progressive N limitation (PNL) hypothesis states that the
growth-enhancing effects of elevated atmospheric CO2will decline
over time, as N accumulates in slow-turnover biomass and soil
pools (Luo et al., 2004). The results of several long-term free air
carbon dioxide enrichment (FACE) experiments suggest that
differences in the degree to which trees species delay PNL may
depend, in part, on the mycorrhizal association of the dominant
trees. At theOak Ridge FACE site – the only FACE site dominated
by AM trees (Liquidambar styraciflua L.) – increases in the
productivity of fine roots under elevated CO2 were not sustained
over time, resulting in no NPP enhancement several years after the
start of the experiment (Norby et al., 2010). The exacerbation of N
limitation in these soils may have occurred owing to the inability of
AM trees to mine N from SOM (Cheng et al., 2012), especially the
N-rich particulate andmineral-associated SOMpools that occur at
depth (Iversen et al., 2012).
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Fig. 3 The relationship between the percentage of ectomycorrhizal (ECM)
trees and soil nitrogen (N) cycling. As the percentage of ECM trees in a plot
increases, the organic N to inorganic N ratio increases (a; r2 = 0.62;
P < 0.001), while net nitrification rates decrease (b; r2 = 0.82; P < 0.0001).
Data are averages of two sampling dates at Griffey Woods (IN, USA) from
2009 (See Supporting Information Methods S1 for Methods). This
establishes that the relative abundance of AM and ECM trees is an excellent
indicator of the nutrient economyof forest plots, as plots dominated by ECM
trees have soil pools dominated by organic N and low nitrification rates.
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In contrast, ECM trees have demonstrated a greater ability to
delay PNL and sustain forest productivity, presumably by mining
SOM for N. Much of the N in forest soils is bound to SOM and
this N must be depolymerized by microbial extracellular enzymes
before it can be taken up by roots (Schimel & Bennett, 2004).
The Rhizosphere Accelerated Mineralization and Priming
(RAMP) hypothesis predicts that under elevated CO2, roots
modify the availability of growth-limiting nutrients by stimulat-
ing the microbial breakdown of SOM in the rhizosphere (Phillips
et al., 2012). Multiple lines of evidence suggest that RAMP
sustained elevated forest productivity at the Duke Forest FACE
site over 15 yr (Drake et al., 2011), as elevated CO2 increased fine
root production (Pritchard et al., 2008a), exudation (Phillips
et al., 2011) and mycorrhizal turnover (Pritchard et al., 2008b;
Phillips et al., 2012) in ECM-associating loblolly pine (Pinus
taeda L.). These findings are generally consistent with those in
other ECM-dominated systems. At the Rhinelander FACE site,
the dominant tree species is aspen (Populus spp.) – a dual colonist
that is primarily colonized by ECM fungi (Andrew & Lilleskov,
2009). The productivity of these stands was sustained with
elevated CO2, as increases in belowground C allocation (Pregitzer
et al., 2008a) enhanced soil C turnover (Talhelm et al., 2009) and
accelerated N cycling (Zak et al., 2011). Similarly, Langley et al.
(2009) reported that the sustained productivity response of three
ECM-associating oaks (Quercus spp.) to elevated CO2 resulted
from enhanced mineralization and priming effects.

Research needs for testing the MANE framework

TheMANE framework builds on previous classifications for forests
such as ‘mull’ vs ‘mor’ (Mueller, 1878; Handley, 1954), ‘open’ vs
‘closed’ ecosystems (Odum, 1969), ‘fungal’ vs ‘bacterial’ energy
channels (Wardle et al., 2004) and ecosystems with ‘extravagant’ vs
‘conservative’ traits (Chapman et al., 2006). A key distinction is
that the MANE framework is predictive, as the mycorrhizal
associations of nearly all temperate tree species are known, and the
relative abundance of trees at the plot, stand or regional scale can be
calculated relatively easily. While the appeal of the MANE
framework is its simplicity, we recognize several aspects of this
framework require more evidence and experimental testing before
it can be appliedmore broadly. In this section, we highlight a few of
these considerations.

A critical question relates to whether the nutrient economy
differences are controlled by plant traits, microbial traits or some
interaction of these two with soil factors (Wurzburger&Hendrick,
2009). There has been a paucity of work conducted on trees which
can associate with both AM and ECM fungi (Chen et al., 2000;
Egerton-Warburton & Allen, 2001), particularly for field-grown
trees (Querejeta et al., 2009). Many of the species which can
associate with both AM and ECM (e.g. Salix, Populus, Eucalyptus)
are currently being used in short-rotation biomass plantations.
Taking advantage of species which associate with AM and/or ECM
fungi may enhance our understanding of the extent to which the
mycorrhizae contribute to nutrient economy differences, and may
aid in the development of soil inoculum that enhances forest
biomass production whileminimizing environmental impacts (e.g.

nitrate leaching). Functional trait differences among taxa of
mycorrhizal fungi may also influence how nutrient economies
differ from site to site. ECM taxa differ in their exudation rates,
enzyme activities and nutritional mode (Courty et al., 2010;
Fransson& Johansson, 2010) and AM taxa have variable effects on
nutrient acquisition and soil biogeochemistry (Smith & Smith,
2011). The degree to which mycorrhizal functional groups (e.g.
ECM species’ exploration strategies (Agerer, 2001) and succes-
sional stages (Twieg et al., 2007) and AM species’ phylogenies)
interact with plant traits to drive the nutrient economy warrants
further study.

A second question is whether the nutrient economy gradients
observed in our study are driven by some unique characteristics of
particular tree species. Many ECM stands in the central hardwood
region (Fig. 1b) are dominated by closely related species (e.g.
Quercus and Carya are both in the order Fagales), and it is possible
that the ECM nutrient economy is driven more by phylogenetic
similarities than mycorrhizal status (Koele et al., 2012). Further,
the ECM stands in this region include few gymnosperms. While
ECM gymnosperms and angiosperms both have slowly decom-
posing leaf litter that contributes to SOM accumulation and soil
acidity, other traits such as foliar chemistry (Koele et al., 2012), root
morphology (Comas & Eissenstat, 2009) and root turnover
(Hobbie et al., 2010; McCormack et al., 2012) generally differ
between these groups. Such differencesmay be sufficient towarrant
a separate category or secondary axis of variation to separate
gymnosperms and angiosperms in forests. Along the same lines, it is
unclear whether AM gymnosperms (e.g. Juniperus, Taxodium and
Thuja) have leaf and root traits that overlap more with AM
angiosperms or ECM gymnosperms. These questions are relevant
for current plant functional type classifications, as gymnosperms
are currently lumped together as needleleaf conifers in land surface
models. Many of these questions can likely be addressed through
the further development of plant trait databases (Kattge et al.,
2011), and by using community-weighted trait-based approaches
to link plant traits with ecosystem processes (Laughlin, 2011) and
landscape-level patterns of soil microbial communities (de Vries
et al., 2012).

Finally, the application of the MANE framework to ecosystems
other than temperate forests would be a fruitful area of research.
Although most tropical trees associate with AM fungi, large
monodominant stands of ECMtrees are often surrounded by dense
AM-dominated stands (Newbery et al., 1997; McGuire et al.,
2008). This presents an opportunity to examine whether there are
sharp gradients in forest nutrient economies as one moves from
AM-dominated to ECM-dominated stands. Other profitable areas
for investigation includewhethernutrient economygradients occur
from woody shrub (ECM) encroachment into grasslands (AM) or
drought-induced shifts from pinyon (ECM) to juniper (AM). The
extent towhich theMANE framework canbe applied to ecosystems
containingboth ericoid andECMspecies in sub-arctic ecosystems is
also an intriguing question. Ericaceous plants have acidifying litter
(Cornelissen et al., 2006) andmycorrhizae which have the ability to
mine recalcitrant SOM for N (Wurzburger & Hendrick, 2009).
Whether these plants represent a further end-member on the
organic nutrient economy spectrum is a question worthy of study.
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Mycorrhizal associations as plant functional groups in
models

Incorporating a mycorrhizal framework into how earth systems
models (ESMs) classify plant functional types (PFTs) has the
potential to improve our ability to predict the response of C–N
couplings to global change. Earth systemmodels are global climate
models that include representations of biogeochemical processes
such that feedbacks between the physical climate and the biological
and chemical processes on earth can be predicted. Current ESMs
predict C and N dynamics using prescribed physiological
parameters for each PFT (Oleson et al., 2010). In the latest version
of the Community Land Model (CLM 4.0), there are three PFTs
that capture temperate forests, needleleaf evergreen, broadleaf
evergreen, and broadleaf deciduous (Lawrence & Chase, 2007).
Each temperate forest PFThas setC : N for leaves, roots, wood, and
litter that impact SOM decomposition and C and N allocation
(Thornton et al., 2007). However, the C : N of leaves and litter are
the only parameters that differ across temperate forest PFTs
(Oleson et al., 2010; Brovkin et al., 2012). In addition, the ratio for
the amount ofC allocated to stem vs leaves increases as a function of
annual NPP, but the allocation of C to leaves and roots is assumed
to be equal across all PFTs. Thus, there is generalization of
physiological differences across temperate forest PFTs and it is an
open question whether a single set of physiological parameters for
temperate broadleaf forests is sufficient.

Incorporating the MANE framework into ESMs could be
accomplished in two steps. First, new PFTs could be developed
based onwell documented differences between ECMandAM trees
in the C : N ratio of leaves and roots, and the chemical quality of
litter (Langley & Hungate, 2003). These mycorrhizal PFTs could
be further refined by including organic to inorganic nutrient ratios,
by incorporating differences in microbial function based on fungal
to bacteria ratios or C-use efficiency terms, and by testing the
hypothesized differences in belowground C allocation (i.e. root
C : leaf C ratios) between ECM and AM trees. We acknowledge
that the utility of mycorrhizal-based PFTs in models will require
the ability to remotely sense and map AM and ECM distributions.
This is currently not possible but recent advances in the remote
sensing of individual tree species in temperate forests suggests that
remote sensing of mycorrhizal association is feasible (Plourde et al.,
2007; Kokaly et al., 2009; Ustin & Gamon, 2010).

Conclusions

There is a critical need to develop new approaches for measuring
belowground processes and to develop conceptual frameworks that
enable the up-scaling of these processes. These unmet needs
represent key obstacles to developing improved projections of how
forests mediate global C cycle–climate feedbacks. Here we present
evidence to support the development of a new framework that
classifies temperate forests based on the mycorrhizal associations of
the dominant trees and their contrasting effects on the nutrient
economy. The framework is based on evidence that forests
dominated by AM trees have an inorganic nutrient economy
(characterized by rapid turnover of plant-derived C by saprotrophs

and the rapid cycling of inorganic nutrient forms), whereas forests
dominated by ECM trees have an organic nutrient economy (as a
result of the slow turnover of plant-derived C and enhanced root-
rhizosphere utilization of root-induced increases in the availability
of organic forms of nutrients). While there are certainly some
exceptions to the rule (e.g. ECM species that have leaf litter traits
that are more ‘AM-like’ and vice versa), the framework should be
useful as a starting point for exploring variation in forest
biogeochemical syndromes across a wide of range of forest types
and ecosystems. Finally, our results suggest that this new concep-
tual framework may facilitate an improved understanding of the
context dependence of forest responses to global changes and
increase the degree to which we can predict the biogeochemical
consequences of shifts in forest composition.
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