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Abstract
In temperate and boreal forests, competition for soil resources between free-living saprotrophs and ectomycorrhizal (EcM) fungi
has been suggested to restrict saprotrophic fungal dominance to the most superficial organic soil horizons in forests dominated by
EcM trees. By contrast, lower niche overlap with arbuscular mycorrhizal (AM) fungi could allow fungal saprotrophs to maintain
this dominance into deeper soil horizons in AM-dominated forests. Here we used a natural gradient of adjacent forest patches that
were dominated by either AM or EcM trees, or a mixture of both to determine how fungal communities characterized with high-
throughput amplicon sequencing change across organic and mineral soil horizons. We found a general shift from saprotrophic to
mycorrhizal fungal dominance with increasing soil depth in all forest mycorrhizal types, especially in organic horizons. Vertical
changes in soil chemistry, including pH, organic matter, exchangeable cations, and extractable phosphorus, coincided with shifts
in fungal community composition. Although fungal communities and soil chemistry differed among adjacent forest mycorrhizal
types, variations were stronger within a given soil profile, pointing to the importance of considering horizons when characterizing
soil fungal communities. Our results also suggest that in temperate forests, vertical shifts from saprotrophic to mycorrhizal fungi
within organic and mineral horizons occur similarly in both ectomycorrhizal and arbuscular mycorrhizal forests.
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Introduction

Soil fungi drive the biogeochemical cycling of carbon (C) and
nutrients in terrestrial ecosystems. Free-living saprotrophic
fungi are major decomposers of soil organic matter, but my-
corrhizal fungi also play an important role [1–3]. In northern

temperate forests, there are two major types of root-associated
fungi: arbuscular mycorrhizal (AM) and ectomycorrhizal
(EcM) fungi [4, 5]. Mycorrhizal fungi acquire C via plant
hosts and many EcM fungi possess the enzymatic capacity
to directly degrade organic matter, potentially competing with
free-living saprotrophs for organic nutrients such as nitrogen
(N), which promote soil C accumulation [6–8]. By contrast,
AM fungi have limited degrading abilities and therefore might
compete less strongly with saprotrophic fungi for nutrients
[9–11]. Such interactions among saprotrophic and mycorrhi-
zal fungi could have far-reaching implications for the C cycle,
especially in northern forests where a large fraction of global
soil C is stored [3, 12, 13]. In particular, it has been suggested
that these interactions might help to explain differences in the
amount and vertical distributions of soil C between
ectomycorrhizal- and arbuscular mycorrhizal-dominated for-
ests [7, 14, 15].

A first step toward understanding of interactions among
saprotrophic and mycorrhizal fungi and their functional con-
sequences is to identify their co-occurrence patterns in soils
[e.g., 16]. Different groups of fungi can compete with each
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other for soil resources because of overlapping niches [7,
16–18]. In particular, fungal types and taxa differ in their
vertical distribution, especially in well-stratified soil [19–21].
In EcM-dominated ecosystems such as boreal forests, strong
vertical segregation of fungal guilds occurs in the soil profile,
where the litter layer is dominated by saprotrophic fungi and
in older and deeper layers are increasingly dominated by EcM
fungi [21–23]. However, it remains unclear whether this spa-
tial separation reflects niche differentiation or competitive ex-
clusion of saprotrophic fungi by EcM fungi [7, 17].
Competitive interactions for nutrients among these fungal
groups could promote organic matter accumulation [24–26].
In AM-dominated forests, interactions and distribution pat-
terns may be different because AM fungi might not compete
as strongly with saprotrophic fungi than EcM fungi. However,
studies of fungal vertical distribution in AM-dominated eco-
systems have largely focused on grasslands and crop systems
[27–29] but not forests. To better understand the impacts of
global and land use changes on forest functioning, there is a
crucial need to take different mycorrhizal types fungi into
consideration simultaneously [6, 7, 30], especially the AM
strategy given its importance in temperate forests [10].

A general hypothesis on vertical segregation among my-
corrhizal types suggests that, when they co-occur, EcM fungi
and ericoid mycorrhizal (ErM) will dominate organic horizons
while AM fungi will predominantly occupy mineral horizons
or soils [31, 32]. This view is supported by studies based on (i)
root colonization patterns in environments where mycorrhizal
types co-occur [e.g., 33], (ii) root patterns and isotopic mea-
surements of plants of different mycorrhizal types [e.g., 32,
34], (iii) root colonization patterns in “dual mycorrhizal”
plants [35–37], (iv) the different nutritional benefits of fungal
symbionts and their enzymatic capacity [31, 32], and (v) glob-
al patterns of mycorrhizal distribution [31, 38]. However, to
our knowledge, this hypothesis about vertical distribution of
distinct mycorrhizal types (e.g., EcM and AM) across hori-
zons has not been supported by detailed fungal community
analyses. For example, mycorrhizal fungal distribution does
not always follow root distribution (e.g., presence of AM fun-
gi in the litter horizon [39]), and to focus on roots or rhizo-
sphere sampling overlooks at long extraradical hyphae of my-
corrhizal fungi that penetrate far from root surfaces. Few stud-
ies have studied vertical distribution at spatial scales that are
fine (i.e., cm) and functional (i.e., by horizons). To our knowl-
edge, the vertical distribution of soil fungi in neighboring
forest stands dominated by different mycorrhizal types has
not been reported. Therefore, it is not clear whether EcM or
AM fungi show similar vertical niches [32].

The difficulties associated with identifying the microorgan-
isms directly involved in soil biogeochemical cycling such as
fungal saprotrophs and mycorrhizal fungi though their
extraradical hyphae has been a major obstacle to understand
their impacts and the importance of their interactions. Specific

biomarkers can be used as proxy to quantify fungal biomass in
soils such as phospholipid fatty acid [e.g., 40], but they are
common in many fungal groups and cannot discriminate be-
tween free-living saprotrophic fungi and EcM fungal lineages
because EcM symbiosis has arisen independently and
persisted numerous times in the Basidiomycetes,
Ascomycetes, and Zygomycetes [41]. Also, the mycelia of
some fungi does not contain ergosterol [42]. With advances
in high-throughput amplicon sequencing [43], we are able to
identify community members and their corresponding guilds
[44–46]. Determining the taxonomic composition of fungal
communities is important because different species within
the same fungal guild can vary in their effects on C and nutri-
ent cycling [e.g., 47, 48]. Using such sequencing methods,
fungal community composition has been found to vary mark-
edly across large spatial scales, driven by broad-scale changes
in climate and soil properties [49, 50]. However, the mecha-
nisms shaping distribution of fungal community and fungal
groups such as free-living and root-associated at small spatial
scales remain comparatively little studied, and high-
throughput amplicon sequencing will allow to understand
their potential impact on ecosystem functioning [19, 51, 52].

To determine the vertical distribution of fungal communities
and guilds among temperate forests, we characterized soil fungi
and chemistry in adjacent forest patches dominated by trees that
form AM or EcM or a mixture of both strategies. Specifically,
we used the natural co-occurring distribution of Acer
saccharum and Fagus grandifolia that associates exclusively
with AM and EcM fungal symbionts respectively [53]. These
two co-occurring tree species share similar ecological strategies
that they are both deciduous and shade-tolerant and can domi-
nate the canopy in adjacent forest patches in northeastern North
America [54, 55]. Their natural co-occurrence patterns provide
an opportunity to compare vertical distribution of fungal com-
munity composition in different forest mycorrhizal types, under
similar environmental conditions, thus minimizing variation in
other important factors such as climate, parent material, or to-
pography. Using this natural experimental design, we assessed
how the fungal community, guilds, and root colonization vary
across soil horizons along an AM-EcM gradient, and deter-
mined to which extent this variability was linked with changes
in soil chemical properties. We expected the shift from
saprotrophic tomycorrhizal fungi to occur deeper in AM forests
compared to EcM forests, and at an intermediate depth in for-
ests containing a mixture of both strategies.

Materiel and Methods

Study Area

The study was conducted at the University of Montréal’s field
station (Station de biologie des Laurentides, Saint-Hippolyte,
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Québec, Canada). The field station is representative of tem-
perate forests of the Lower Laurentians and the Canadian
Shield. The soil has a sandy loam texture derived from well-
drained rocky glacial till on a bedrock of Precambrian anor-
thosite [56, 57]. The soils are ferro-humic and gleyed humo-
ferric podzols with moder humus forming the forest floor
[57–59]. The mean annual temperature is 4.3 °C and total
annual precipitation is 1195 mm, with ~ 25% falling as snow
(based on 1981–2010 data, meteorological station no.
7037310, Saint-Hippolyte). The study area is located within
the sugar maple-yellow birch domain [60]. Most of the forest
regrew following a major fire that occurred around 1923 [61].
Mesic sites are composed mostly of a mosaic of Acer
saccharum and Fagus grandi fo l ia , wi th Betu la
alleghaniensis, Populus grandidendata, andAcer rubrum also
common [57]. The understory comprised various small tree
species (e.g., Acer pensylvanicum) and shrubs (e.g.,
Vaccinium spp., Viburnum spp.).

Selection of Forest Plots

Plots were selected based on the dominance of different my-
corrhizal tree types: AM-dominated stands (> 80% relative
basal area by AM trees; mainly Acer saccharum) and EcM-
dominated stands (generally > 80% relative basal area by EcM
trees except one plot at 63%; mainly Fagus grandifolia), and
mixed stands (approximately equal basal area of AM and EcM
trees, mainly A. saccharum maple and F. grandifolia). Tree
basal area was based on all trees ≥ 5-cm diameter at breast
height (DBH) within a plot. Plots were 20 m × 20 m in size.
We selected five blocks, each containing one plot of each
corresponding to one of the three mycorrhizal types (i.e.,
EcM, AM, mixed), for a total of 15 plots (Fig. S1). Plots were
selected as to minimize variation in environmental conditions
(i.e., altitude, slope, aspect, total basal area; Table S1) among
plots within a block, and to be as close as possible from each
other (< 400 m). For each plot, precise geographic coordi-
nates, altitude, topographic location, slope, and orientation
were measured (Table S1).

Soil Sampling

Soil sampling was conducted in July and August 2015. In
each plot, 10 samples were taken along two oriented north-
south transects (five samples per transect). Samples were col-
lected to 20-cm depth using PVC cores (7.5 cm in diameter).
Samples were kept in coolers with ice and transported to the
laboratory to be processed within 96 h of sampling. The PVC
cores were split open to measure horizon thickness then sep-
arated by the following: litter (L), where original structures are
easily distinguishable; fragmented (F), where there had been
partial decomposition where structures were difficult to rec-
ognize; and humus (H), comprised of highly decomposed

organic matter, where original structures are indistinguishable
(see Fig. S2). The mineral horizons were Ae, as characterized
by leaching/eluviation of clay; Fe, Al, or organic matter; and
B, as characterized by illuviation/enrichment in organic matter
[62]. The 10 samples per plot were pooled by horizon. One
sub-sample per horizon per plot was immediately frozen for
subsequent DNA extraction. Fine roots (< 2 mm in diameter)
were set aside for mycorrhizal colonization analyses and a
sub-sample of soil was air-dried for chemical analyses.

Soil Analysis

Air-dried soils were analyzed for pH, total carbon (C),
total nitrogen (N), total phosphorus (P), organic P, inor-
ganic P, and labile P. The pH was determined in 10 mM
CaCl2 in a 1:2 soil to solution ratio with a glass electrode.
Total C and N were determined simultaneously by auto-
mated combustion and gas chromatography with thermal
conductivity detection on a Flash EA112 analyzer (CE
Elantech, New Jersey, USA). After NaOH-EDTA extrac-
tion, inorganic P in the extraction material was deter-
mined by molybdate colorimetry at 880 nm with a 1-cm
path length. Total P in the NaOH-EDTA extracts was
determined by molybdate colorimetry at 880 nm with a
1-cm path length, following acid-persulfate digestion at
80 °C overnight in sealed glass tubes. Organic P was
calculated as the difference between NaOH-EDTA total
P and NaOH-EDTA Pi. Labile (plant-available) P was
determined by Bray-1 extraction, with phosphate detected
using automated molybdate colorimetry on a Lachat
Qu i k ch em 8500 (Hach L t d . , Love l a nd , CO) .
Exchangeable cations were determined by extraction in
0.1 M BaCl2 (2 h, 1:30 soil to solution ratio) and detec-
tion by inductively coupled plasma optical-emission spec-
trometry (ICP–OES) with an Optima 7300 DV (Perkin-
Elmer Ltd., Shelton, CT, USA). Total exchangeable bases
(TEBs) was calculated as the sum of the charge equiva-
lents of Ca, K, Mg, and Na. Effective cation exchange
capacity (ECEC) was calculated as the sum of the charge
equivalents of Al, Ca, Fe, K, Mg, Mn, and Na. Base
saturation was determined as TEB / ECEC × 100.

Root Colonization by Fungi

Fungal colonization was determined on fine roots (< 2-mm
diameter) of F, H, Ae, and B horizons (no roots in the L).
Roots were cleared in 10% w/v KOH, then stained in an ink
and vinegar solution for 5 min at 90 °C [63–65]. Roots were
then rinsed in slightly acidified tap water for 30–40 min to
remove excess ink, after which they were placed in a 50%
(v/v) lacto-glycerol solution for storage until colonization
could be evaluated. The gridline intersection method was per-
formed under stereomicroscope to quantify the length of roots
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colonized by AM and EcM fungi [63, 66]. Due to magnifica-
tion limits, some structures of ericoid mycorrhizal fungi might
have been included in the AM colonization percentage.

Fungal Community Characterization

The fungal community was characterized by amplicon se-
quencing. Soil DNA was extracted using the PowerSoil
DNA Isolation Kit (no. 12888-100—Mo-Bio Laboratories
Inc., Carlsbad, USA) following the instructions of the manu-
facturer. Around 100 mg of soil for organic horizons (L, F,
and H) and 200 mg for mineral horizons (Ae and B) were used
for the extraction.

Soil amplification of the Internal Transcribed Spacer of
the ribosomal RNA was performed by Genome Québec
(Montréal, Canada) with the ITS3_KYO2 and ITS4 prim-
er pair [67]. This pair of primer limits coverage bias to-
ward Ascomycetes or Basidiomycetes and is also known
to amplify Glomeromycetes [e.g., 68]. The final reaction
mix contained 0.02 U μl−1 Taq Roche HiFi polymerase,
1 × Buffer 10 × with 18 mM MgCl2, 5% DMSO, 0.2 mM
of each dNTP, and 0.5 μM of each primer and DNA
sample diluted at 1/100. Thermal cycling was done in an
Eppendorf Mastercycler Gradient (Eppendorf, Hamburg,
Germany) with the following cycling conditions: 2-min
initial denaturation at 94 °C; 40 cycles of 30-s denatur-
ation at 94 °C, 30-s annealing at 55 °C, and 30-s elonga-
tion at 72 °C; and a 7-min final elongation at 72 °C. The
PCR products were loaded on 1% agarose gels with 1 ×
sodium borate buffer run at 220 V, and visualized after
ethidium bromide staining (1 μg ml−1).

Soil amplicon sequencing was performed by using the
MiSeq Illumina technology by Genome Québec (Montréal,
Canada). The final concentration of the reaction mix
contained 0.025 U μl−1 Taq Roche HiFi polymerase, 1 ×
Buffer 10 ×, 1.8 mM of MgCl2, and 5% DMSO. Sequencing
was done in anMiSeq Illumina with the following conditions:
10-min initial denaturation at 95 °C; 15 cycles of 15-s dena-
turation at 95 °C, 30-s annealing at 60 °C, and 1-min elonga-
tion at 72 °C; and a 3-min final elongation.

Bioinformatics

The fungal community was determined by filtering,
denoising, and assigning taxonomy to paired amplicons
us ing a cus tomized scr ip t (h t tps : / /g i thub .com/
alexiscarter/Fungal_com_SBL/tree/master/dada2) adapted
from the DADA2 pipeline [69]. In brief, using the
filterAndTrim function, reads were truncated at 280 bp
and discarded if they had more than three expected
errors or a quality score lower than six. Then, amplicon
sequence variants (ASVs) were inferred for each sample
with the dada function. Forward and reverse reads were

merged using the mergePairs function with a minimum
overlap of 12 bp. Potentially, chimeric sequences were
identified by the pooled method of the removeBimeras
function. The amplicon sequence variant approach was
used instead of the classical operational taxonomic as pro-
posed by Callahan et al. [70] and others [71]. This method
does not use a particular threshold for classifying se-
quences into operational taxonomic units, as no threshold
appears to be universally applicable for fungi [72].
Instead, it used the divisive amplicon denoising algorithm
aimed at finding ASV that refer back to original biologi-
cal sequences [69, 73]. The taxonomy of the ASV was
assigned with the UNITE database, version 7.2 [74].
ASV that belong to the same species were grouped to-
gether. The functional information for ASV was obtained
from the online FUNGuild database [44].

Statistical Analyses

To describe the fungal community and assess the effects
of environmental parameters, we used ordination ap-
proaches and multivariate analyses of variance. The com-
munity matrix was composed of the number of sequences
per ASV of 75 soil samples from five soil horizons in
each of 15 plots (one sample of L horizon in an EcM plot
was excluded due to poor amplification). Due to some
inherent limitations of the approach, either biological
(e.g., varying number of DNA copies per organism) or
technical (varying sequencing depth, extraction, and am-
plification biases among samples), the number of se-
quence reads is not a direct measure of taxa abundance
in the environment, but comparisons among samples re-
main useful as they can be considered semi-quantitative
[75, 76]. Explanatory variables for each sample were clas-
sified into three groups: (i) soil chemistry, (ii) soil horizon
(L, F, H, Ae, or B), and (iii) forest type (AM, EcM, or
mixed).

Differences in soil properties, root colonization, guild
abundance, and richness among horizons and forest type were
tested using linear mixed effect models; block was treated as
random factor in these analyses. Model assumptions were
assessed by visual inspections of residuals. Comparisons were
determined using post hoc Tukey tests which were used to
determine significant differences.

In β-diversity analyses, we used the Bray-Curtis dissimi-
larity index for the community structure and its binary version,
the Sørensen index, for the community composition [77].
These asymmetrical coefficients do not consider double
zeroes and can therefore be used with raw abundances or
counts [77].

To visualize differences in fungal community compo-
sition and abundance among samples, we used non-metric
multidimensional scaling (NMDS). To test for differences
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between samples across horizons and forest types, we
used permutational multivariate analysis of variance
(PERMANOVA). P values for pairwise tests were adjust-
ed using the Benjamini-Hochberg method [78]. Because
the PERMANOVA method is sensitive to differences in
multivariate dispersions among groups, the homogeneity
of dispersion was tested to assess differences and tested
for significance by permutations [79].

Distance-based redundancy analysis (RDA) was used to
quantify the extent to which changes in fungal community
structure were related to soil chemistry, horizon, and forest
type [77]. Soil chemistry data were standardized and linear
dependencies were explored using variance inflation factors
and avoided if > 10 [80]. To test how much variance was
independently explained by the explanatory matrices, varia-
tion partitioning was performed using partial RDA [pRDA,
81]. In RDA and pRDA, coefficients of determination were
adjusted (i.e. adjusted-R2 values) to take into account the num-
ber of explanatory variables in the model [82, 83].

Analyses were performed and visualized using the R soft-
ware [84] with the following main packages: dada2 [69],
dplyr [85], emmeans [86], ggplot2 [87], ggpubr [88], nlme
[89], phyloseq [90], and vegan [91]. Code for bioinformatical
and statistical analyses are available at https://doi.org/10.
5281/zenodo.3631982. Sequence and chemistry data can be
accessed at https://doi.org/10.5281/zenodo.3631861.

Results

Soil Chemistry Variation Across Horizons and Forest
Types

All soil chemical properties varied significantly across hori-
zons (Fig. 1), and these differences were consistent across
forest types (soil horizon × forest type interaction, P > 0.05;
except for pH where P = 0.026). The pH of the L horizon
declined from pH ~ 4 (in 0.01 M CaCl2) to ~ 3.25 in the H
horizon, but this decline was not as pronounced for AM for-
ests than for EcM or mixed forests (Fig. 1(a)). The pH then
increased from the H to the B horizon in all forests. Effective
cation exchange capacity and base saturation declined with
increasing depth (Fig. 1(b, c)), except for ECEC in the Ae
horizon. Organic C generally declined with depth, but AM
forests tended to have lower organic C concentration in the
H horizons than EcM ormixed forests (Fig. 1(d)). By contrast,
total N increased from the L to the Ae horizon and then de-
clined in the B horizon (Fig. 1(e)). As a result, the C:N ratio
decreased with increasing depth from the L to the Ae horizon
(Fig. 1(f)). Inorganic and organic P increased in deeper hori-
zons while labile (Bray) P decreased (Fig. 1(g–i)).

Forest types differed significantly in their pH, C:N ratio,
NaOH-EDTA total P, NaOH-EDTA organic, and inorganic P

concentrations (P < 0.05). AM-dominated forest plots tended
to have higher pH, total P, inorganic P, and organic P but
lower C:N ratio compared to EcM-dominated forest plots.

Root Colonization by Mycorrhizal Fungi

Colonization of fine roots by AM and EcM fungi was signifi-
cantly different amongmycorrhizal type (P < 0.0001, Fig. 2) but
only differs across horizons in the EcM-dominated forest (P =
0.007). Fine roots inAMforestweremore strongly colonizedby
AMfungi than those frommixedandEcMforests (P < 0.05,Fig.
2(a)). By contrast, fine roots in EcM forests were more strongly
colonized by EcM fungi compared to those from AM forests
(P < 0.05, Fig. 2(b)). Root colonization by EcM fungi tended to
decrease with soil depth in EcM forest down to ~ 20% in the B
horizon (Fig. 2(b)). Inmixed andAM forests, EcM colonization
was highest in theH orAe horizons but always lower than 30%.

Overall Fungal Community

We found 781 fungal taxa (at the species level or below) from
a total of 2521 ASV detected using high-throughput amplicon
sequencing across all horizons and plots. Fungal ASV rich-
ness tended to decrease with soil depth regardless of the forest
type (Fig. S3). The highest fungal ASV richness was found in
L horizons of the AM forests.

Fungal Guilds

Saprotrophic and symbiotrophic (EcM, AM, and ErM) guilds
showed distinct vertical distributions among horizons and
across forest types (Fig. 2(c–f)). Saprotrophic fungal taxa
dominated the upper horizons (especially L and F; Fig.
2(c)), and mycorrhizal fungi were almost absent in the L ho-
rizon (Fig. 2(d–f)). Fungal taxa assigned to the saprotrophic
guild were slightly more abundant in the organic horizons of
the AM and mixed forests compared to EcM forest (Fig. 2(c)).
Abundance of saprotrophic fungi was significantly different
among forest types (P < 0.031) but differences were not sig-
nificant across horizons of different forest types (soil horizon
× forest type, P = 0.325). In deeper horizons, sequences attrib-
uted to mycorrhizal fungi were more abundant (Fig. 2(d–f)).
Sequences of AM (i.e., Glomeromycetes) fungi were much
more abundant in the AM forest (Fig. 2(d)), and the opposite
was true for EcM fungi (Fig. 2(f)). Both AM and EcM taxa
were well represented in the mixed forests (Fig. 2(d, e)).
Sequences of ericoid mycorrhizal (ErM) fungi were less abun-
dant in AM forest except for the F horizon where their abun-
dance was high in all forests (Fig. 2(f)). Richness patterns of
fungal guilds tended to follow abundance data (Fig. S4).
Saprotrophic fungi had the higher number of taxa followed
by EcM, ErM, and AM fungi. Saprotrophic fungal richness
was highest in the upper horizons and decreased with depth.
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Fig. 1 Soil physico-chemical characteristics from organic-to-mineral ho-
rizons (L, F, H, Ae, B) in each mycorrhizal forest type (AM, arbuscular
mycorrhizal; EcM, ectomycorrhizal; Mixed, mixture of AM and EcM):
(a) pH (in CaCl2), (b) effective cation exchange capacity, (c) base

saturation, (d) organic carbon, (e) total nitrogen, (f) carbon over nitrogen
ratio, (f) total phosphorus, (g) organic phosphorus, and (h) labile (Bray)
phosphorus. All data are means ± 1 SE (n = 5)
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There was a higher richness of EcM fungi in EcM and mixed
forests and very few EcM taxa in the L horizon.

Fungal Community Structure

Soil horizons had the strongest influence over fungal
community structure (includes abundance data) in the
three forest types, as shown by the NMDS ordination
(Fig. 3). The composition (based on presence-absence da-
ta) of the fungal community showed similar patterns (Fig.
S5), suggesting that results primarily reflected changes in
ASV composition rather than relative abundance.
Differences in multivariate dispersions with Bray-Curtis
and Sørensen measures were not significant among forest

types (P > 0.05) but were significant among horizons
(P < 0.05), with the L horizon showing the lowest multi-
variate dispersions. In other words, fungal communities
from the L horizons were more similar to each other than
fungal communities from the other horizons. Fungal com-
munity composition and abundance significantly differed
among all horizons but also among forest types
(P < 0.001, Table S2). However, the differences among
horizons did not depend on forest type and vice versa
(soil horizon × forest type interaction not significant;
Table S2). Pairwise comparisons revealed that fungal
community composition and abundance in AM and EcM
forests significantly differed from each other, but not from
mixed forests (Fig. 3).

Fig. 2 Soil profiles from organic-to-mineral horizons (L, F, H, Ae, B) on
each mycorrhizal forest type (AM, arbuscular mycorrhizal; EcM,
ectomycorrhizal; Mixed, mixture of AM and EcM) showing variations
in: root colonized by (a) AM fungi, (b) EcM fungi, and abundances (on

shifted log data) of sequences belonging to (c) saprotrophic fungi, (d) AM
fungi, (e) EcM fungi, and (d) ericoid mycorrhizal (ErM) fungi. Upper
organic horizon (L) had no roots so colonization was set to zero. All data
are means ± 1 SE (n = 5, except n = 4 for the L horizon in EcM forest)
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Edaphic Drivers of Fungal Community Structure

Variation in soil chemistry explained a large fraction of the
total variation in fungal community structure (adjusted-R2 =
23.3%, P = 0.001, see Table S3 for results of the constrained
ordinations). In the L horizons, fungal communities were as-
sociated with higher pH, ECEC, labile L, and C:N ratio
(Fig. 4). Fungal communities in mineral horizons (Ae and
B) were associated with high organic and inorganic P but
low labile P (Fig. 4). Between L and mineral horizons, fungal
communities were associated with low pH (H horizon) and
high labile P (F horizon).

Forest mycorrhizal type explained a lower but still signifi-
cant amount of variation (adjusted-R2 = 2.7%, P = 0.006).
There was a clear difference in the fungal community structure
of AM and EcM forests, whereas the mixed forests were in-
termediate or more similar to EcM forest (Fig. 5).

Abiotic and biotic variables together explained ~ 35% (P =
0.001) of the total variation in the fungal community structure.
Variation in fungal community structure depended on hori-
zons and forest mycorrhizal types, and was also influenced
by soil chemistry (Fig. 6). Within forest types, fungal commu-
nities were not significantly different among blocks. Horizon,
forest type, and soil chemistry still explained a significant
fraction of the variation in the fungal community structure
when considering the effects of the other variables
(Table S3). Most of the explained variation was shared be-
tween soil chemistry and horizon (Fig. 6). However, forest

type still had a unique and significant impact on the variation
of the fungal community. A small fraction of variation was
shared between soil chemistry and forest type (Fig. 6).

Discussion

In this study, we determined vertical shifts in soil fungal
community composition across soil horizons and forest
mycorrhizal types (AM, EcM, and mixed AM/EcM) and
compared how saprotrophic fungal dominance extends to
deeper horizons in AM vs. EcM forests. Although there
was a tendency for lower abundance of saprotrophic fungi
in organic F and H horizons in EcM forests than in AM or
mixed forests, all three forest types showed a similar
saprotrophic-to-mycorrhizal shift in fungal composition
with increasing soil depth. This shift in fungal dominance
was most pronounced in organic horizons. Moreover, we
found that changes in fungal community composition
were largely driven by differences in soil chemistry,
which were far stronger across horizons (i.e., depth) with-
in a single forest than across forest mycorrhizal types for
the same horizon. Our results highlight the importance of
considering soil vertical structure and associated changes
in chemistry when characterizing soil fungal communities.
They also suggest that, at least in northern forests, AM
fungi are not being restricted where inorganic nutrients
predominate and might have more similar edaphic vertical

Fig. 3 Ordination of the fungal
community composition (Bray-
Curtis dissimilarities) plotted in
the different forest types using a
non-metric multidimensional
scaling with two dimensions and
a stress of 0.17. ** indicates dif-
ference in fungal community
structure between arbuscular my-
corrhizal (AM) and
ectomycorrhizal (EcM) plots (P ≤
0.01), N.S. indicates non-
significant differences (see
Table S2 for details)

Fig. 4 Constrained ordination of
the overall fungal community by
soil chemistry variables using a
distance-based redundancy anal-
ysis with Bray-Curtis dissimilar-
ities. Horizons are shown in dif-
ferent shape and colors. The two
first constrained axes explaining
most variation are drawn.
Adjusted-R2 = 23.3%, P = 0.001
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niches with EcM fungi than what has been suggested in
the literature [31, 32, 35].

Fungal communities were strongly stratified with depth
along the soil profile, being most distinct in the L horizon
(composed of recently fallen leaves). Litter of the EcM, AM,
and mixed forests had high fungal richness and distinct fungal
communities that were dominated by saprotrophic fungi. This
has also been observed in forests of tropical, temperate, and
boreal biomes dominated by EcM trees [19, 21, 22, 92, 93].
Dominance by saprotrophic fungi in the most superficial litter
layer has also been observed in other AM-dominated ecosys-
tems [29, 94], as we have found in this northern temperate
forest. Our results therefore provide further evidence of this
general pattern whereby the L horizon possesses a distinct

fungal community dominated by fungal saprotrophs, com-
pared to deeper horizons in which mycorrhizal fungi are more
abundant.

As suggested by Bahram et al. [51], studies that have re-
ported weak vertical segregation of fungal communities have
often excluded the most superficial L horizon from their anal-
yses [e.g., 16, 49]. The L horizon of the EcM, AM, and mixed
forests tended to have higher C:N ratio, pH, concentration of
cations, and labile P than deeper horizons. While this pattern
seems generalizable for pH [e.g., 21, 93], it remains uncertain
or unexplored for the other chemical variables. Our results
suggest that the L horizon which is characterized by the pres-
ence of organic matter in which the original structures can be
visually distinguished [62] should be considered separately in
future studies of fungal community composition, given its
chemical, microbial, and functional distinctiveness.

From the F to the B horizon, fungal communities showed
strong turnover across soil horizons, with distinct fungal com-
munities in each horizon. The fungal composition, abundance,
and guilds tended to progressively change among horizons in
the soil profile but these changes were less pronounced than
with the L. This was also observed in other study systems [21,
93, 95]. There are reports of evenly distributed guilds among
the organic and mineral horizons [e.g., 16], but vertical segre-
gation of fungi and especially root-associated fungi is often
strongly impacted by determinant factors such as soil chemis-
try and host plants [19, 20, 51]. In our study, there was major
variation in the vertical distribution of soil fungi that was
largely driven by soil chemical characteristics, with these
changes being observed in all three forest mycorrhizal types.
Our results further support those of other studies that have
found the vertical variability of mycorrhizal and saprotrophic
fungal communities across different soil horizons to be much
larger than horizontal or temporal variability [51, 96]. Studies
that focus on ecosystem topsoil processes in terrestrial envi-
ronments should consider the strong physical, chemical, and
biological heterogeneity that occurs within the first few centi-
meters, by sampling distinct soil horizons separately.

Fig. 5 Constrained ordination of the fungal community structure
depending on the forest mycorrhizal type (AM, arbuscular mycorrhizal;
EcM, ectomycorrhizal; Mixed, mixture of AM and EcM) using a

distance-based redundancy analysis with Bray-Curtis dissimilarities.
Forest types are shown in different shapes and colors. The two
constrained axes are shown. Adjusted-R2 = 2.7%, P value = 0.006

Fig. 6 Venn diagram displaying the amount of variation (i.e., adjusted-
R2) of the fungal community explained by horizon, soil chemistry, and
forest mycorrhizal type or a combination of them. Values < 0.1% are not
shown. Ellipses are not drawn to scale. Only variables with significant
redundancy analysis (RDA) results were tested for partial-RDA and in-
cluded in this diagram. Overall adjusted-R2 = 34.8%, * indicates P < 0.05
and † indicates non-testable portion. For more details, see Table S3

Temperate Forests Dominated by Arbuscular or Ectomycorrhizal Fungi Are Characterized by Strong Shifts from...



We showed that underground fungal community structure
varied significantly between neighboring forest dominated by
AM or EcM trees. As expected, AM forests showed higher
abundance of AM fungi, whereas EcM forests showed higher
abundance of EcM fungi. Direct observation of fungal colo-
nization in roots confirmed these patterns. Forests with a mix
of both strategies supported intermediate communities be-
tween the two extremes of the gradient, as reported in a study
focusing on ecosystem processes [e.g., 97]. It is worth noting
that fungal saprotrophs tended to be more abundant in organic
horizons of mixed and AM forests compared to EcM forests.
Together with higher pH and lower organic C in these AM
forests, this result might indicate a tendency toward a more
“inorganic nutrient economy” compared to the studied forests
dominated by EcM fungi. The latter would represent a more
“organic nutrient economy,” associatedwith a slower turnover
of plant-derived C due to lower abundance of free-living
saprotrophs [10]. These small differences observed at local
scale may be responsible for observed patterns found at the
ecosystem scale [14]. It has been found elsewhere that forests
dominated by different species of broadleaf trees of the same
mycorrhizal strategy can also show differences in fungal com-
munity structure [98]. However, in our study, fungal compo-
sition, abundance, and guilds tended to differ between EcM
and AM forests. Such a distinction has previously been report-
ed in a study comparing very distinctive EcM forests of broad-
leaf trees vs. conifers [99]; the effect of mycorrhizal type was
relatively small but nonetheless present, and could also be
linked to differences in nutrient availability.

Our study design provides a useful system for exploring the
relative importance of mycorrhizal type on soil biogeochem-
ical cycling. The soil profile in these northern temperate for-
ests have low vertical mixing, resulting in podzols with high
stratification, as commonly encountered in boreal soils. Soil
horizons were easily identifiable mainly through their color
and such sampling may allow for better association between
DNA sequences and soil chemistry as well as more valuable
comparison across sites [100]. Variation in important factors
such as parentmaterial, topography, and regional climate were
minimized but other factors (e.g., productivity, soil texture)
could still co-vary with mycorrhizal dominance at the plot
scale. Importantly, this study system allowed us to study dif-
ferent mycorrhizal types within the same site [7, 30, 51] and
across a gradient of mycorrhizal dominance [15]. The ob-
served differences in soil chemistry among forests could be
linked with dominant mycorrhizal strategies. Higher
saprotrophic fungal diversity has been observed in the upper
soil layers of AM-dominated tropical forests compared to
EcM forests [101]. Our study provides further evidence that,
in a temperate system, host plants are an important factor
controlling mycorrhizal community composition [51, 102].
To some extent, this was expected given that AM and EcM
fungi are obligate symbionts with their host plants [32]. As

such, considering tree mycorrhizal strategies and their interac-
tions with saprotrophs may help to better predict carbon stor-
age at small and global scale [8].

Our use of high-throughput amplicon sequencing approach
allowed us to assess the distribution of the soil fungal com-
munity and to discriminate among AM, EcM, and
saprotrophic fungi. However, result from high-throughput se-
quencing approaches need to be interpreted with caution be-
cause of unavoidable biases at different levels [43, 103]. For
example, how to adequately normalize for taxa abundance
among samples remains unresolved [104, 105]. Furthermore,
although we acknowledge that soil and root compartments
might host different fungal communities [e.g., 106], sampling
bulk soil allows to capture the potential free-living
saprotrophs as well as root-associated fungi and their
extraradical hyphae. Finally, our choice of the primers might
have resulted in an under-representation of some fungal
groups such as Glomeromycetes, but comparisons in taxa
abundance between samples remain relevant [76].Using spe-
cific primers targeting Glomeromycetes [107, 108] and plants
using DNA from the root tissue [68, 109] would certainly
allow to further understand the importance of these under-
ground interactions and the vertical segregation among root
and fungi of different mycorrhizal types.

Our results show that fungal communities in horizons ver-
tically separated by a few centimeters are very different from
each other in terms of composition and abundance. This con-
tributes to high fungal and functional diversity in the topsoil.
Moreover, our work suggests that the forest mycorrhizal type
influences the overall and saprotrophic fungal community,
advancing our current understanding of the potential impacts
of mycorrhizal strategies on the distribution of key organisms
for ecosystem functioning such as C and nutrient cycling [10].
We also reported for the first time that broad patterns of ver-
tical fungal distribution across the upper five horizons in AM-
dominated northern forest are comparable to neighboring
EcM-dominated or mixed forests. This result challenges the
traditional view that AM fungi have a more restricted niche
toward mineral soils compared to EcM fungi due to their
incapability to directly decompose organic matter [31]. Our
study suggests that the ecological and functional roles of AM
fungi in organic horizons of temperate forests, including re-
cently deposited litter, deserve more attention [39].
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