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Accurate haplotype networks are of critical impor-
tance for studies at the population-species interface or
below the species level, in particular those that estimate
parameters based on network topologies such as nested
clade analyses (NCA). Although the impact of missing
data in phylogenetic analyses has received much atten-
tion (reviewed in Kearney and Clark, 2003), no equiva-
lent studies exist for haplotype network methods even
though these approaches have major differences (Posada
and Crandall, 2001). For example, the most commonly re-
ported consequence of missing data in bifurcating trees is
the occurrence of multiple equally likely solutions that
when summarized in a consensus lead to reduced res-
olution in the form of polytomies (Kearney and Clark,
2003). In contrast, in haplotype networks the aim is to
represent all equally most-parsimonious solutions and
missing data are likely to result in greater network com-
plexity. Moreover, because of the low levels of divergence
found in intraspecific data sets, missing data have the
potential to make a sequence look identical to several
haplotypes, thereby reducing resolution.

Intraspecific data sets may contain ambiguous and/or
missing characters for several reasons: incomplete sam-
pling (when concatenating multiple genes or when
shorter sequences are obtained for some accessions), am-
biguous trace file (sequence chromatogram) because of
allelic variation or poor sequencing reaction, or they
might be invoked in sequence alignments containing in-
dels longer than one base pair (insertions or deletions) to
avoid giving a high weight to a single insertion or dele-
tion (Kelchner, 2000; Simmons and Ochoterena, 2000).
This latter category is expected to become more frequent
with the increasing use of nuclear markers in popula-
tion studies (e.g., Hare, 2001; Garrick and Sunnucks,
2006).

The behavior of three commonly used haplotype
network methods was evaluated in the presence of
missing data: minimum spanning networks (MSNs),
statistical parsimony (SP), and full median networks

(hereafter named median networks [MNs]). A complete
description of algorithms for MSNs (e.g., Excoffier and
Smouse, 1994; Bandelt et al., 1999), MNs (Bandelt et al.,
1995) and SP (Templeton et al., 1992; Clement et al.,
2002) can be found elsewhere, but a quick descrip-
tion of each is given as online supplemental material
(http://www.systematicbiology.org).

These three methods have some important differences
that need to be mentioned here. MSNs do not recon-
struct any unsampled haplotypes, which implies that
whenever unsampled haplotypes of degree ≥3 exist
(the degree of a node corresponds to the number of
branches connected to it), hypothetical ancestors need to
be added—the Steiner problem in graph theory (Foulds
et al., 1979)—and MSNs will not give optimal solutions
(Fig. 1). Both SP and MNs reconstruct Steiner nodes (i.e.,
of degree ≥ 3) and therefore do not have the same pitfall
as MSNs. MNs will always contain all most parsimo-
nious solutions for any data set (Bandelt et al., 1995),
although the downside of this is that they may also
contain suboptimal solutions and that their graphical
representation can be very complex. To circumvent this
latter problem, modifications of MNs have been pro-
posed (Bandelt et al., 1995, 1999; Huber et al., 2001). These
modified methods will not be dealt with because they
behave exactly as MNs in the situations presented here.
MNs is also limited because it can only be applied to bi-
nary characters, even though a procedure to apply them
to multistate characters is described elsewhere (Bandelt
et al., 1995) and quasi-networks—a derivative of MNs
for nucleotide data—have recently been described (Ban-
delt and Dür, 2007). SP aims at giving “locally” most
parsimonious solutions as it gives a higher weight to
short branches during network construction. Therefore,
SP may exclude “real” homoplasies (if present) from
shorter branches on the network, potentially resulting in
a network that is not “globally” most parsimonious (S.
Woolley, personal communication). This criterion could
explain why inaccurate SP networks are more frequent
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FIGURE 1. (I) Hypothetic data set used to illustrate differences among a minimum spanning network (MSN; II), a statistical parsimony
network (SP; III), and a median network (MN; IV). MSNs do not infer unsampled haplotypes and fail to find the most parsimonious solution.
Both MNs and SP reconstruct unsampled (or extinct) haplotypes of degree ≥3 (Steiner nodes), but SP (as obtained from the program TCS
[Templeton, Crandall, and Singh]) also represents nodes of degree 2. Networks are illustrated so as to reflect their philosophies—mutations
are shown as perpendicular bars along the branches for MSNs and MNs, whereas branches represent mutations for SP. Filled circles represent
inferred unsampled or extinct haplotypes. Numbers above branches for SP indicate mutation events on the network; the ordering of mutation
events on branches that only contain nodes of degree 2 represents one of the possible optimizations (e.g., mutations 4 and 5 can be interchanged).

when sampled haplotypes are distant from one another
(Cassens et al., 2005). However, it is possible to deter-
mine if a solution is globally optimal for some data sets
(Holland et al., 2004).

METHODS

Assessing the performance of network methods with
missing data using simulations is not straightforward.
Indeed, simulating missing data that are biologically re-
alistic is complex because of the multiple ways that these
can arise. Instead, simple hypothetical examples repre-
senting situations encountered in empirical studies were
used to illustrate how these methods handle missing
data. This approach makes it easier to show the impact
of missing data as the effects of other confounding fac-
tors, such as homoplasy, are minimized. An alignment
of six sequences that do not contain missing data (se-
quences A to F; Fig. 2) was analyzed to obtain expected
networks. Six data sets with missing data were then con-
structed by individually adding a different sequence that
contains missing characters (sequences G to L; Fig. 2)
to the alignment without missing data (A to F). These
data sets were then analyzed to see how the addition

FIGURE 2. Hypothetical DNA alignment of 12 sequences used to il-
lustrate the behavior of different algorithms for constructing haplotype
networks in the presence of missing data.

of one sequence with missing data affects network re-
construction. The following situations were investigated,
in which missing characters (I) are at constant sites (se-
quence G; Fig. 2); (II) are at variable sites and alterna-
tive optimizations do not change sequences that are at
shortest distance to the one containing the missing data
(sequence H; Fig. 2); (III) are at variable sites and, apart
from these sites, the sequence bearing them is identical to
more than one haplotype (sequences I and J; Fig. 2); and
(IV) are at variable sites and alternative optimizations
of missing characters change the sequences that are at
shortest distance to the one containing missing charac-
ters (sequences K and L; Fig. 2). Although only one or
two examples were chosen to illustrate each situation,
the conclusions reached were not influenced by these
choices. Moreover, the conclusions also apply to larger
data sets as these situations could occur locally in a larger
network.

For each of these situations, networks were con-
structed using MSNs, SP, and MNs. MSNs were con-
structed in ARLEQUIN (version 3.11; Excoffier et al.,
2005) with the missing data threshold per site fixed to
25%. SP networks were inferred with the software “Tem-
pleton, Crandall and Singh” (TCS ver. 1.21; Clement et al.,
2000), with the parsimony limit fixed to “2” so that all
haplotypes were connected. This was necessary because
all sites are variable in our example, an unrealistic as-
sumption for intraspecific data sets. Constant sites do not
alter our results and for ease of presentation additional
constant sites were not added to the present examples.
MNs were obtained using NETWORK (version 4.201;
fluxus-engineering, 2004), with the reduced median net-
work option but with a reduction threshold >2 to obtain
a full median network. All possible re-orderings of se-
quences in data sets were tested to see if this influences
the results.

Two criteria were used to judge the methods: (a) do
missing data affect the topology of the network obtained
without missing data and (b) are all most parsimonious
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solutions represented for sequences with missing data
that have an ambiguous position.

RESULTS

All three methods resulted in identical networks when
only sequences without missing data were considered
(Fig. 3). When missing data were at constant sites or when
they did not change the identity of the sequences that
were at the shortest distance to sequences with missing
data (situations I and II), all three methods gave net-
works that were identical to those constructed when se-
quences with missing data were excluded (sequences G
and H; Fig. 3). This was expected because such missing

FIGURE 3. Results of network construction methods using alignments from sequences shown in Figure 2. Networks are illustrated so as to
reflect their philosophies—mutations are shown as perpendicular bars along the branches for minimum spanning networks (MSNs) and median
networks (MNs), whereas branches represent mutations for statistical parsimony (SP). Filled circles represent unsampled or extinct haplotypes.
The situations investigated (I to IV) consist of missing characters that (I) are at constants sites; (II) are at variable sites and alternative optimizations
do not change sequences that are at shortest distance to the one containing missing data; (III) are at variable sites and, apart from these sites,
the sequence bearing them is identical to more than one haplotype; (IV) are at variable sites and alternative optimizations of missing characters
change the sequences that are at shortest distance to the one containing missing characters.

data do not affect network construction for the methods
investigated.

In situations where different optimization of missing
characters make a sequence identical to other (different)
sequences (situation III), MNs always preserved the rela-
tionships obtained with no missing data (sequences I and
J; Fig. 3). Yet, it also never showed alternative position-
ing of sequences with missing data. In the same situation,
MSNs did not preserve the relationships obtained with
no missing data (Fig. 3). In these cases where resolving
missing data could make sequences identical to several
different sequences, MSNs collapsed these into a sin-
gle haplotype. Because of this collapsing, no alternative
positioning for sequences with missing data remained.
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With SP, different networks were obtained for different
re-orderings of the sequences in the matrix. SP networks
either showed one of the alternative positionings of the
sequence with missing data or collapsed all haplotypes
that had a distance of 0 with the sequence that contains
missing data (Fig. 3). If the network was accurate in the
former situation, it was not in the second.

In situation IV, where different optimizations of miss-
ing characters change the identity of sequences that are
at shortest distance to the sequence that contain miss-
ing data (sequences K and L), only MNs preserved the
relationships obtained without missing data. The re-
sults obtained with MSNs and SP when sequence K was
included were correct; however, when sequence L was
included results were biased. These misleading results
occur when alternative most-parsimonious positions for
the sequence with missing data are separated by a branch
of length two on the network. MNs did not show al-
ternative positioning of sequences with missing data,
whereas MSNs and SP showed alternative positioning of
sequence K and some alternatives for sequence L (Fig. 3).

The methods investigated, as currently implemented
in the programs used in this study, also differed re-
garding the way they warn of potential problems when
there are missing data in the data set. ARLEQUIN,
which implements MSNs, does not give any warning
when there are missing data; it only removes columns
that contain more than a given percentage of missing
values (the default value is 5%). NETWORK, which
reconstructs MNs, reports that missing data tend to
make the analysis less reliable, but it does not help
to identify problematic sequences considering that not
all missing data lead to problems in network construc-
tion. Finally, TCS, implementing SP, warns the user
when there are ambiguities in collapsing sequences into
haplotypes and lists these problematic sequences in
the log file (although these lists are often incomplete),
which might indicate alternative positions of sequences
(e.g., situation III).

DISCUSSION

The results presented here clearly demonstrate that
MSNs, SP, and MNs can all give misleading networks in
the presence of missing data. In some situations, the net-
work methods investigated resulted in biased network
relationships and/or failed to indicate alternative posi-
tions for sequences. Both problems are serious because
they can affect results of analyses that rely on network
topology, such as population differentiation indices (i.e.,
using patristic distances along a network in analysis of
molecular variance; Excoffier et al., 1992) or past popula-
tion history inferences obtained from nested clade anal-
yses (Templeton et al., 1995). For instance, the collapsing
of different sequences into a single haplotype reduces
the overall haplotype diversity and gives the illusion of
shared haplotypes among populations that could bias
estimates of population structure and migration rates,
results obtained from nested clade analysis, and assess-
ment of recurrent formation of polyploids or apomicts.

Results obtained for each method could be better un-
derstood if their algorithms are considered. Misleading
networks occur with MSNs because ambiguous charac-
ter states result in nonmetric distances by violating the
triangle inequality property. Because MSNs collapse all
sequences that are at distance 0 into a single haplotype,
violation of the triangle inequality property by missing
data can cause two distinct sequences to be collapsed
into a single haplotype. For example, sequence I is at
distance 0 with sequences D and F (Fig. 2), causing all
three to be collapsed into a single haplotype (Fig. 3),
even though the true distance between D and F is equal
to 1.

MNs (as implemented in NETWORK) always pre-
served the relationships obtained without missing data
and did not show alternative positioning for sequences
because it resolves ambiguities before network construc-
tion by replacing missing data in one sequence by using
the most common state found in the closest sequences (A.
Roehl, personal communication), as described in Bandelt
et al. (1999). In other words, all potential ambiguities are
removed prior to network construction.

The results obtained with SP were highly dependent
upon the order of the sequences in the data set, which is a
consequence of the current implementation of SP in TCS
(see also the TCS documentation; Clement et al., 2000).
Consider the following alignment:

1 AT
2 AA
3 A?

TCS compares the sequences in the order 1-2, 1-3, and
2-3. In this example, the comparison 2-3 will not occur
because sequence 3 has already been collapsed with 1
to give haplotype [AT]. According to the above matrix,
two haplotypes will be obtained: [AT] with a frequency
of 2 (sequences 1 and 3) and [AA] with a frequency
of 1 (sequence 2). If the order of sequences in the ma-
trix was instead 2-1-3, haplotypes [AT] (frequency 1; se-
quence 1) and [AA] (frequency 2; sequences 2-3) would
be obtained. And if the first sequence of the matrix was
3, only haplotype [A?] would be obtained with a fre-
quency of 3. Therefore, a sequence with missing data
that has a distance of 0 with several distinct sequences
will be grouped with the sequence that appears first in
the matrix, and the other equally parsimonious alterna-
tives will not be shown. TCS gives a warning when such
ambiguities occur and identifies potential problematic
sequences in the log file, but the list of ambiguous se-
quences is not always exhaustive. This order-dependent
collapsing of sequences into haplotypes in TCS ex-
plains why different networks were obtained for SP
(Fig. 3).

Although missing data were represented by question
marks by convention, misleading results could also be
obtained if ambiguous nucleotides were used instead.
Note that if ambiguous nucleotides are used to represent
a real polymorphism (e.g., because of allelic variation)
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FIGURE 4. Results obtained by applying the modified MSNs described in Appendix 1 when applied on the data sets of Figure 2. An asterisk
(∗) beside the sequence means that its position is ambiguous; alternative positions are shown in such instances. The two situations (III and IV)
consist of missing characters that (III) are at variable sites and, apart from these sites, the sequence bearing them is identical to more than one
haplotype; (IV) are at variable sites and alternative optimizations of missing characters change the sequences that are at shortest distance to the
one containing missing characters (see text).

rather than an unknown character state, none of the
methods will reflect this information (i.e., the presence
of distinct sequences) on the network.

Clearly, the results obtained here are dependent of the
way each method is implemented. For example, MNs
obtained from SPECTRONET (Huber et al., 2002) differ
from the ones presented here because all sites with miss-
ing data are removed from the analysis. Although this
removes ambiguities, it is not appealing as it reduces
the amount of information present in the original data
set and could collapse sequences that are different when
deleted sites are considered, a property that may have
important consequences for intraspecific data sets.

Suggestions

Whenever possible, potentially problematic missing
data should be resolved by further experimentation. But
this is not always possible and network methods need to
provide ways to handle missing or ambiguous data. Net-
work construction problems might be avoided by delet-
ing either sequences or columns that contain most of the
missing data, but as mentioned above, this solution is not
desirable. Ideally, all methods should aim at fulfilling the
two criteria used here, which are network accuracy and
representation of alternative positions for sequences that
have an ambiguous position due to missing data. How-
ever, it would also be important for methods to identify
potentially problematic sequences as this would make it
easier to assess how missing data may affect the results.

One simple modification could be made to MSNs that
would greatly improve the results obtained with miss-
ing data. This involves constructing a network with se-
quences that do not have any missing data at variable
sites and then subsequently adding sequences with miss-
ing data (the complete algorithm is given in Appendix 1).
This modification would not collapse different sequences
that do not have missing data into a single haplotype

(Fig. 4), although this may occur among sequences that
contain missing data.

SP could also be improved by placing all sequences
with missing data at variable sites at the end of the ma-
trix, preferably in an increasing order of missing data.
As explained above, this will not collapse different se-
quences into a single haplotype, although problems may
still occur if there are several sequences with missing
data. Moreover, this would not show alternative posi-
tions for sequence with missing data. Again, the best
strategy might be to construct a network without se-
quences with missing data and then adding the remain-
ing haplotypes within the parsimony limit. Clearly, there
is place for improvement with the actual algorithms re-
garding the handling of missing data.

In general, the present results illustrate the importance
of data exploration when using network methods. Sound
advice would be to analyze data sets with and without
missing data to ensure that network construction is not
affected and to use several network methods as they have
different strengths (see also Cassens et al., 2005). Dif-
ferent methods will often produce different networks,
either because of unsampled haplotypes, homoplasies,
or missing data—a fact that warrants further attention
from biologists when using network methods to obtain
reliable representations of genealogies.
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APPENDIX 1 AN ALGORITHM FOR CONSTRUCTING
MINIMUM SPANNING NETWORKS IN THE PRESENCE OF

MISSING DATA

This modified minimum spanning network (MSN) algorithm first
constructs a network only from sequences that do not have missing
data and then adds sequences with missing data: (1) calculate the dis-
tance between any two sequences and arrange these in increasing order;
(2) put all distance comparisons that include sequences with missing
data at variable sites aside to first consider only comparisons between
sequences that do not have missing data. Let δi be the smallest dis-
tance observed in the sample; (3) connect all haplotypes of different
sub-networks that are at distance δi ; (4) repeat step (3) with second
shortest distance (δi+1) and so on until a network of all haplotypes
is formed; (5) then consider comparisons with sequences that have
missing data; (6) starting with the smallest distance (δ j ), connect all
haplotypes of different sub-networks that are at distance δ j . When a
sub-network (or haplotype) can be connected at more than one place
on another sub-network at a given distance, connect it to all of them; (7)
repeat step (6) with the next shortest distance (δ j+1) until all sequences
with missing data are connected to the network.

significant reduction in the landmass of New Zealand
(Cooper and Cooper, 1995, and references therein). How-
ever, whether or not New Zealand was completely sub-
merged is a matter of controversy and recent debate




