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1  | INTRODUC TION

The reactions of different species to external stimuli are not in‐
dependent. Because physiological responses have a genetic basis, 
closely related species are more likely to have similar responses to a 
specific treatment. This phylogenetic non‐independence of species 

responses violates the assumptions of most statistical tests, such 
as the independence of residuals in regression, and negatively im‐
pacts the results in terms of parameter estimates and p‐values (e.g. 
Revell, 2010). This has been recognized for some time and a family 
of methods—comparative methods—have been developed to ad‐
dress this problem (Felsenstein, 1985, 2008; Grafen, 1989; Hadfield 
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Abstract
1.	 Analyses in many fields of ecology are increasingly considering multiple species 

and multiple individuals per species. Premises of statistical tests are often vio‐
lated with such datasets because of the non‐independence of residuals due to 
phylogenetic relationships or intraspecific population structure. If comparative 
approaches that account for the phylogenetic relationships of species are well 
developed and their benefits demonstrated, the importance of considering the 
intraspecific genetic structure, especially in combination with the phylogenetic 
structure, has rarely been addressed.

2.	 We investigated whether it is beneficial to account for intraspecific genomic relat‐
edness in multi‐species studies. For this, we used a phylogenetic mixed model to 
analyse first a suite of simulated data and then results from one example ecologi‐
cal study—a budburst experiment where clippings of 10 tree and shrub species 
were subjected to different temperatures and photoperiods.

3.	 We found that accounting for intraspecific genetic structure yields more accurate 
and precise fixed effects as well as increased statistical power, but more so when 
the relative importance of the intraspecific to the phylogenetic genetic structure 
is greater. Analysis of the budburst experiment further showed that accounting for 
intraspecific and phylogenetic structures yields improved estimates of warming 
and photoperiod effects and their interaction in explaining the time to budburst.

4.	 Our results show that statistical gains can be made by incorporating information 
on the intraspecific genomic relatedness of individuals in multi‐species studies. 
This is relevant to investigations that are interested in intraspecific variation and 
that plan to include such observations in statistical tests.
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& Nakagawa, 2010; Ives, Midford, & Garland, 2007; Lynch, 1991; 
Revell, 2010).

Recently there has been growing awareness among ecologists 
of the need to also consider intraspecific variation within ecophy‐
logenetic analyses. Within community ecology, there have been 
calls to increase studies of intraspecific trait variation (Alofs, 2016; 
Violle et al., 2012) and to develop the necessary statistical models 
for such multilevel data (Funk et  al., 2017; Read, Hoban, Eppinga, 
Schweitzer, & Bailey, 2016). Similarly, studies of climate change have 
repeatedly highlighted the need for models that incorporate vari‐
ation in responses across both species and populations (Anderson 
et al., 2009; Charmantier et al., 2008; Chen, Hill, Ohlemuller, Roy, 
& Thomas, 2011; Willis, Ruhfel, Primack, Miller‐Rushing, & Davis, 
2008). However, little attention has been given to the genetic cor‐
relation structure present below the species level within the field 
of comparative methods (but see Hansen, Armbruster, & Antonsen, 
2000; Felsenstein, 2002; Stone, Nee, & Felsenstein, 2011; Read 
et al., 2016; Garamszegi, 2014). Moreover, studies rarely account for 
both phylogenetic and intraspecific genetic correlations simultane‐
ously, even though the sampling structure in many ecological studies 
calls for such a design.

Presently, studies that account for phylogenetic correlation al‐
most always ignore intraspecific genetic structure and as such as‐
sume that intraspecific samples are drawn from a single population. In 
contrast, many ecological studies explicitly sample individuals across 
important geographical ranges or from populations among which 
gene flow could be restricted, resulting in a potentially non‐trivial 
correlation structure among samples. If this correlation is important, 
statistical tests that do not account for it are expected to be biased.

Until recently, the difficulty of obtaining genetic data to accu‐
rately estimate intraspecific genetic correlations provided suffi‐
cient justification for ignoring this source of variance in ecological 
studies. But the rapid development of sequencing techniques 
now allows precise estimation of genetic relatedness (Gienapp 
et al., 2017), at relatively affordable prices. This could allow a bet‐
ter understanding of how ecological responses are influenced by 
the genetic relationships among species and populations at once. 
One area where this potential is particularly high is climate change 
research, where evidence of rapid ecological and evolutionary 
change is growing. Research has highlighted that species responses 
to climate change appear phylogenetically patterned, with species 
from certain clades and with particular traits appearing most vul‐
nerable to local extinctions with warming (Willis et al., 2008). At 
the same time, other work has highlighted discrepancies in species 
responses when studied over space (Charmantier et al., 2008), sug‐
gesting populations within species may show different responses 
to climate change. This is supported by population‐level research 
that has found large differences in the range shifts of northern 
versus southern populations with warming (Anderson et al., 2009; 
Chen et al., 2011). Such results make clear that the best estimates 
of responses will require methods that consider variation at both 
the species and population levels, and the connections between 
different populations and different species, all at once.

The objectives of this report are to assess the importance of ac‐
counting for intraspecific genetic correlations in ecological studies. 
To achieve this, we use the phylogenetic mixed model (PMM) that 
allows multiple levels of genetic structure to be considered simulta‐
neously (Lynch, 1991; Housworth, Martins, & Lynch, 2004; Hadfield 
& Nakagawa, 2010). Other approaches can be used to account for in‐
traspecific correlations (reviewed in Stone et al., 2011; Garamszegi, 
2014), but as we show below, none currently provides as much 
flexibility as the PMM. We assess the importance of accounting for 
intraspecific genetic correlation structure using simulated data and 
provide a climate change‐related empirical example where we inves‐
tigate the importance of temperature and photoperiod on the timing 
of budburst of ten tree and shrub species.

2  | MATERIAL S AND METHODS

2.1 | The phylogenetic mixed model

The PMM has been described in detail elsewhere (Hadfield & 
Nakagawa, 2010; Housworth et al., 2004; Villemereuil & Nakagawa, 
2014), thus our description here is brief and focuses on the inclusion 
of phylogenetic and intraspecific correlations structures as random 
effects in the model and on the inclusion of fixed effects. In the fol‐
lowing, we assume that phylogenetic and intraspecific correlations 
have been estimated independently, which allows the two struc‐
tures to be included as separate effects and to quantify their rela‐
tive importance. Here, lowercase italic letters represent numbers, 
lowercase boldface letters vectors and uppercase boldface letters 
matrices. The PMM has the form:

where y is the response variable, μ is the intercept, x is an ex‐
planatory variable, β the regression coefficient, a represents the 
effects due to the phylogenetic structure, b the effects due to 
the intraspecific structure, and e the residuals. x is a fixed effect 
(there could be more than one), whereas a and b are random ef‐
fects. The random effects and residuals are assumed to follow 
normal distributions:

�2
a
 is the phylogenetic variance, �2

b
 is the intraspecific variance, and �2

e
 is 

the residual variance. The matrices A and B represent the phylogenetic 
and the intraspecific correlation structures, respectively. The identity 
matrix I indicates that the residuals are independent and identically 
distributed. Accordingly, the (co)variance structure (V) of the model is 
V=�2

a
A+�2

b
B+�2

e
I.

(1)y=�+�x+a+b+e,

a∼ (0, �2
a
A)

b∼ (0, �2
b
B)

e∼ (0, �2
e
I)
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The total variance (�2=�2
a
+�2

b
+�2

e
) can be partitioned in herita‐

ble and non‐heritable portions. The heritable portion in the present 
framework consists of the phylogenetic and intraspecific correlation 
structures. Hence, the heritable proportion of the total variance is 
(�2

a
+�2

b
)∕�2. This is akin to the heritability (h2) parameter in quan‐

titative genetics or the λ parameter in comparative methods (see 
Housworth et  al., 2004, for a discussion). Note that this heritable 
fraction does not exclusively characterize genetic changes as it can 
also include non‐genetic contributions that can be described by the 
genetic correlation structures. The remaining variance (�2

e
), consid‐

ered non‐genetic, includes phenotypic plasticity, measurement error 
or other effects not defined by the genetic correlation structures.

2.2 | Phylogenetic generalized least squares

A brief mention of phylogenetic generalized least squares (PGLS) 
seems important as it is a popular comparative method. A PGLS 
model that would include phylogenetic and intraspecific correlation 
structures could be denoted as follows:

In other words, the residuals of the regression are normally distrib‐
uted according to a correlation structure that is a combination of 
phylogenetic and intraspecific effects, with respective weights de‐
termined by the parameter δ. The main difference with the PMM 
is the absence of a residual term: in PGLS residuals are completely 
structured by the genetic correlation matrices provided. This as‐
sumption can be relaxed by rescaling the phylogenetic tree to give 
more or less weight to the terminal branches of the tree (Revell, 
2010). We do not consider this PGLS model further here, but it is 
compared to the PMM using simulations in Appendix S1.

2.3 | PMM simulations

Simulations were used to examine the performance of the PMM 
under a suite of conditions where accounting for intraspecific cor‐
relations may be important. We simulated data under the PMM 
model (Equation 1) assuming μ = 0 with various relative contribu‐
tions of the phylogenetic and intraspecific variances, and tested 
how this affected the estimation of the fixed and random effects. 
The data simulations followed closely those of Revell (2010) and 
are described in Appendix S1. One difference is the intraspecific 
correlation structure that corresponded to the mean variance co‐
variance matrix obtained from 20 independent gene genealogies 
simulated within a population tree using the Coalescent. The simu‐
lations were performed for different regression slopes β ∈ {0, 0.1, 
0.25} and different ratios of intraspecific and interspecific struc‐
ture (�2

a
:�2

b
) while keeping their sum to 2. In all cases, �2

e
=1 and 

�2
x
=2. Five hundred simulations were performed for each parame‐

ter combination. We simulated data with 98 or 100 individuals but 
different ratios of species vs. individuals per species, specifically 

7:14, 10:10 and 14:7. Larger datasets of 20 species and 20 indi‐
viduals per species were also simulated.

2.4 | Model fitting and performance

The PMM model was fitted using the MCMCglmm package in R 
(Hadfield, 2010). The phylogenetic structure was included in the 
model by giving the phylogeny to the pedigree argument. The in‐
traspecific structure was incorporated using the genetic intraspe‐
cific correlation matrix with a singular value decomposition approach 
as described in Stone et al. (2011). We used the default priors for 
the fixed effects and diffuse inverse‐Wishart priors for the random 
effects with V = 1 and ν = 0.002. We fitted the following models, 
named according to their respective random effects: (1) null (with 
no genetic structure, y = μ + βx + e); (2) inter (phylogenetic structure 
only, y = μ + βx + a + e); (3) intra (intraspecific genetic structure only, 
y = μ + βx + b + e); (4) inter+intra (phylogenetic and intraspecific ge‐
netic structures, y = μ + βx + a + b + e). The MCMC chains were run 
for 2100 generations, removing the first 100 as burnin and sampling 
the chain every 10 generations. These settings provided good con‐
vergence for all models and all simulation parameters.

Models were compared for accuracy and precision with regard 
to the estimation of the fixed effects and for the heritable portion 
of the variance. Accuracy measures how close the estimated slope is 
to the true value and precision represents the standard deviation of 
the estimated slope in each MCMC run. We also report the number 
of simulations that gave a posterior probability >0.95 for the slope to 
be greater than 0; this estimates the power of the model when β > 0 
and the type I error when β = 0.

2.5 | Budburst experiment

We investigated the usefulness of using the PMM on an ecological 
study design that included both inter‐ and intraspecific variation. We 
analysed a subset of a larger experiment for which we additionally 
sampled material for genetic analysis. The experiment's objective 
was to determine the impact of temperature increases and longer 
photoperiods on the budburst timing for several tree and shrub spe‐
cies (experiment details and data described in Flynn & Wolkovich, 
2018, 2019). Clippings from 10 species (see Appendix S1) were col‐
lected from five individuals at two sites: Harvard Forest (MA, USA; 
42.5°N, 72.2°W) and the Station de biologie des Laurentides (St. 
Hippolyte, QC, Canada; 45.9°N, 74.0°W). Clippings were collected 
in January 2015 and kept cold until the start of the experiment. They 
were then subjected to different temperatures (15°C or 20°C) and 
photoperiods (8 or 12 hr of light per day) in growth chambers at the 
Arnold Arboretum. The number of days to budburst was recorded 
for each clipping.

To model the interspecific structure, we pruned a published 
phylogenetic tree of 32,223 angiosperm species based on 7 genes 
(Zanne et  al., 2014) and included it in the model as in the simula‐
tions. The intraspecific genetic correlation structure was esti‐
mated separately for each species from thousands of genome‐wide 

(2)y∼ (�+�x, �2(�A+ [1−�]B)).
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genotyping‐by‐sequencing markers per species (Elshire et al., 2011). 
Genetic similarities between individuals within species were esti‐
mated using genpofad (Joly, Bryant, & Lockhart, 2015), converted 
into species variance–covariance matrices, and incorporated into the 
model with a block diagonal matrix as described for the simulations. 
Details on our methods and R code are provided in Appendices S1 
and S2.

The data was analysed in MCMCglmm with warming, photope‐
riod, and their interaction as fixed effects and time to budburst 
as the response variable. For the random effects, we fitted the 
four models used in the simulations in terms of variance struc‐
ture. We used the same priors as for the simulated data, but ran 
the chains for 100,000 generations after a burnin of 5,000 gen‐
erations, sampling every 20 generations. MCMC run convergence 
was assessed using the potential scale reduction factors (PRSF; 
converges to 1 with increasing convergence). We used the de‐
viance information criterion (DIC) to compare models. Data and 
commented scripts to replicate the analyses are presented in 
Appendix S2.

3  | RESULTS

3.1 | Simulations

The null model without genetic correlation structure always per‐
formed the worst in terms of precision and accuracy, whereas 
the intra and inter + intra models performed best (Figure 1). The 
inter model with only phylogenetic structure did not perform as 
well as models intra and inter  +  intra, but its performance im‐
proved with increasing relative importance of the phylogenetic 
structure over the intraspecific structure. All models performed 

better when the intraspecific structure was less important. 
To estimate the heritable proportion of the total variance, the 
inter  +  intra model was the most accurate (Figure  1), although 
it slightly overestimated the genetic contribution for greater 
contributions of intraspecific structure. The inter model under‐
estimated the genetic structure of the data, but its estimates 
were greater than the strict interspecific variance included in 
the simulations. The intra model overestimated the total genetic 
structure of the data even though only the intraspecific struc‐
ture was modelled.

All models had similar type I error rates (Figure 2), except for the 
intra model that was slightly higher, especially for increasing impor‐
tance of the phylogenetic structure. The power of the models was 
similar for β  =  0.1, whereas the models intra and inter  +  intra had 
the best power for β = 0.25. The power of model inter with β = 0.25 
improved with increasing importance of the phylogenetic effect and 
approached the performance of intra and inter + intra when the phy‐
logenetic effect was three times as important as the intraspecific 
effect (i.e. when �2

a
:�2

b
=1.5:0.5).

Varying the amount of population structure had little impact on 
the results (Appendix S1; Figures S1 and S2). In contrast, increasing 
the ratio of the number of species to the number of individuals per 
species resulted in an improved relative performance of the inter 
model compared to models that included the intraspecific structure, 
but mostly in terms of accuracy (Appendix S1; Figures S3 and S4). 
Importantly, the advantage of taking into account intraspecific ge‐
netic correlations was also present when data were simulated for 
a single species (Figures S5 and S6). Finally, increasing the samples 
sizes in the simulations resulted in increased accuracy, precision and 
power for all methods but did not affect their relative performances 
(Figures S7 and S8).

F I G U R E  1   Results of the simulation study for the four variance structure models in terms of slope accuracy and precision, and for 
estimates of the heritable proportion of the total variance (heredity) with 10 species and 10 individuals per species. Accuracy is the mean 
absolute distance between the estimated slope (𝛽 ) and the true slope (β), precision is the mean of the standard deviation of the posterior 
distribution of 𝛽  for each simulation, and heredity is the proportion of the total variance explained by the genetic correlation structure (the 
dashed line indicates the true value). The x‐axis indicates the ratio of phylogenetic (�2

a
) to intraspecific (�2

b
) variances used in the simulations. 

Only the results for β = 0.25 are shown as these results were not influenced by the slope
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3.2 | Budburst data

The number of loci obtained per species ranged from 264 in Prunus 
to 2,188 in Vaccinium and was broadly correlated with the genome 
size of species (see Appendix  S1 for detailed information on the 
genetic data). The mean locus‐based population structure (ΦST) be‐
tween sites was similar across species and ranged from 0.10 to 0.19, 
suggesting a moderate population structure. Similarly, phylogenetic 
trees built from the genetic distances showed that individuals from 
one site were generally more similar to individuals from the same site 
than to individuals from the other site (Appendix S1).

The MCMC runs showed good convergence (PRSF = 1 for fixed 
and random effects). The model that best fitted the data was intra ac‐
cording to the DIC (2117), followed by inter + intra (2123), inter (2135) 
and null (2426). Incorporating intraspecific structure thus resulted in an 
important improvement in fit (models intra and inter + intra), while not 
accounting for genetic correlation (null) clearly resulted in a poorer fit.

The wider posterior intervals obtained for the fixed effects with 
the null model illustrate the importance of taking into account the 
genetic structure present in the data (Figure 3). This was particularly 
important for the interaction between warming and photoperiod: 
the confidence interval included 0 for the null model but not the 
three other models. The three models that accounted for the genetic 
correlation structure gave similar results, but there was a slight im‐
provement in precision when the intraspecific genetic structure was 
included. The results suggest that the 5°C warming treatment had 
the strongest effect on budburst, followed by a longer (four hours) 
photoperiod (Figure 3). The interaction between these effects was 
positive and significant (except for the null model), suggesting that 
they are not additive.

Regarding the partitioning of the variance, the genetic correla‐
tion structures explained about two‐thirds of the total variance for 
all models (Table 1). The inter + intra model that partition the genetic 
variance into phylogenetic and intraspecific further suggests that 
the intraspecific variance is slightly greater than the interspecific 

variance, but the confidence interval was huge, thus suggesting that 
these variance components are difficult to estimate with precision in 
this dataset (Table 1).

4  | DISCUSSION

4.1 | Accounting for the intraspecific genetic 
correlation structure

An increasing number of studies mention the potential importance 
of accounting for intraspecific genetic structure in multi‐species 
studies. Our results from simulations and empirical data showed 
multiple advantages of this approach. Perhaps most importantly, 
incorporating intraspecific correlation structure in statistical mod‐
els led to a gain in accuracy and precision of the fixed effects, 

F I G U R E  2   Proportion of the simulations that resulted in a significant regression slope (𝛽 >0) using a threshold of α = 0.05. The results for 
β = 0 represent the type I error of the models whereas the results with β ∈ {0.1, 0.25} represent the power of the models
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which are generally the parameters of interest in a study. Both the 
simulations and the empirical studies highlighted this result. The 
simulations further showed that this advantage persisted under 
various conditions including when there were no phylogenetic ef‐
fects (single‐species analyses).

The models incorporating intraspecific genetic correlations per‐
formed well because they partition the total variance in the data—
that would otherwise be classified mostly to the error term—to the 
genetic correlation structure(s). This is shown by the higher values of 
the variance due to heritable effects in models that included intra‐
specific genetic correlations (Figure 1; Table 1).

In addition to providing more accurate fixed effects, the finer 
partitioning of the total variance gives a better understanding of 
the study system by quantifying the proportion of the variance 
that is due to the intraspecific genetic structure. Notably, the im‐
proved performance observed when incorporating the intraspecific 
structure is not due to the specific modelling framework used in 
this study, namely the PMM. Indeed, the simulations we performed 
under a PGLS model that incorporates intraspecific structure also 
showed a marked improvement in performance compared to stan‐
dard ordinary least squares (Appendix S1; Figures S7 and S8).

One surprising result was the very good performance of the model 
that included only the intraspecific correlation structure (intra), which 
performed nearly as well as the model that accounted for both phylo‐
genetic and the intraspecific genetic structures (inter + intra) in terms 
of accuracy and precision in simulations. This result may lead some 
researchers to consider including only the intraspecific structure, but 
we advise against it. First, the relative performance of the intra model 
decreased relative to the inter + intra model when the importance of 
the intraspecific correlation structure decreased relative to the phy‐
logenetic variance (Figure 1). Second, the inter + intra model provided 
more precise estimates of the proportion of the total variance that is 
genetically structured in our simulations (Figure 1) and more precise 
estimates of fixed effects across a wide range of parameters. And last, 
as our fundamental biological understanding of ecological questions 
often stresses the multilevel nature of individuals within species, we 
argue it is important to include both structures in analyses.

4.2 | The phylogenetic mixed model

The PMM offers greater flexibility than other comparative meth‐
ods (Hadfield & Nakagawa, 2010). One advantage is that it uses a 
terminology familiar to most ecologists. The phylogenetic and the 

intraspecific genetic correlation structures are considered “ran‐
dom effects” in the model, similar to how blocks are often treated 
in a randomized block design. That is, the model assumes that they 
add variance to the species response in a structured way that can 
be estimated and removed from the residual error, resulting in 
improved performance of the model. Furthermore, because the 
residual variance is estimated by the model (in contrast to other 
methods, see Hadfield & Nakagawa, 2010), model performance 
is not affected if the intraspecific correlation structure has little 
effect on the data; in such cases the estimated variance due to 
intraspecific structure will simply be small.

Another advantage of the PMM is that it allows modelling 
several random effects simultaneously (Garamszegi, 2014). In our 
analyses, the total variance of the model included a phylogenetic 
fraction, an intraspecific fraction, and a residual fraction. But it 
would be straightforward to also add a random effect that could 
account for measurement error, given the appropriate study de‐
sign. In contrast, the PGLS approach we introduced only consid‐
ered a phylogenetic and an intraspecific variance with no residual 
error, which likely explains the increased Type I error compared 
to the PMM as residual errors were included in the simulations 
(Appendix S1).

Finally, the PMM is particularly well suited for experimental 
studies that include several fixed effects as in this study. In this re‐
gard, this study differs from many comparative studies in that the 
samples studied were subject to experimental treatments. In such 
experiments, each species has several values for the response 
variable; at least one per fixed effect. Although such datasets can 
be analysed using most comparative methods, which often ne‐
cessitate duplicating the terminal branches of the phylogeny to 
have—for each species—one tree tip that matches each observa‐
tion for the response variable, the analysis is much more intuitive 
with PMM. For instance, the phylogenetic correlation structure 
can easily be included in the model by associating the species on 
the phylogeny to the factor representing the species in the dataset 
(see Appendix S2).

4.3 | Modelling guidelines

The importance of accounting for intraspecific genomic relat‐
edness will depend on the importance of the intraspecific ge‐
netic structure. Our results showed that the advantages gained 
from this approach are more important with greater population 

TA B L E  1   Mean proportion of the total variance explained by the random effects of the models fitted to explain change in days to 
budburst, with their 95% posterior intervals (in brackets). The heredity (h2) and the proportion of the total genetic structure due to the 
intraspecific correlation (�2

b
∕(�2

a
+�2

b
)) are given for models where they can be estimated

Models �
2
a

�
2

b
�
2
e

h2
�
2

b
∕(�2

a
+�

2

b
)

null — — 1 [1,1] —  

inter 0.65 [0.44, 0.85] — 0.35 [0.15,0.56] 0.65 [0.44, 0.85]  

intra — 0.68 [0.30, 0.94] 0.32 [0.06,0.70] 0.68 [0.30, 0.94]  

inter + intra 0.21 [4 × 10−6, 0.79] 0.47 [1 × 10−5, 0.93] 0.31 [0.05,0.66] 0.69 [0.34,0.95] 0.69 [2 × 10−5, 0.99]
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structure (obtained with smaller effective population sizes, re‐
stricted gene flow and longer divergence times) and when the in‐
traspecific variance has a greater relative importance compared to 
the phylogenetic variance (provided that the phylogenetic struc‐
ture is corrected for).

The gain from modelling intraspecific correlation structure also 
depends on the genetic basis of the traits studied and the rele‐
vance of the explanatory variable(s) used. In our example, budburst 
is known to have strong responses to the environmental cues used 
in the experiment (warming and photoperiod), thus suggesting that 
these are important explanatory variables. Yet, budburst has also 
recently been found to be particularly plastic across populations 
(Aitken & Bemmels, 2016). It is thus possible that the study of other 
traits with a stronger genetic basis (e.g. timing of budset) could have 
resulted in larger improvements when accounting for the intraspe‐
cific correlation structure.

On a practical aspect, we used the terminology inter‐ and intra‐
specific in this study, but the delimitation between the two genetic 
correlations structures does not have to be at the species level. The 
decision should be taken depending on the nature of the study. In 
some cases, it might be logical to have a genetic structure above and 
below subspecies, and in others such as in recent species complexes 
it might be interesting to characterize the genetic correlations be‐
tween closely related species using genome wide markers to capture 
the complex mosaic structure of genomes.

Comparative methods are being increasingly used to correct for 
the phylogenetic non‐independence of species in statistical tests, in 
part because of the ease with which one can obtain a well resolved 
phylogeny. Our results show that important gains can also be ob‐
tained by accounting for the intraspecific genetic structure.
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